
A Comparision of Service
Mesh Options
Looking at Istio, Linkerd, Consul-connect

Syed Ahmed - CloudOps Inc

Introduction

About Me

• Cloud Software Architect @ CloudOps
• PMC for Apache CloudStack
• Worked on network modules in Openstack

and CloudStack
• Previously worked on the Netscaler LB
• Part of the DevOps team @ Yahoo!

About CloudOps

• We Design, Build and Operate Clouds
• Help customer own their destiny in the Cloud
• Vender/Cloud Agnostic

A Case for
Service Mesh

Monolithic Architecture

● Strong Coupling between different modules
causing anti-patterns in communicating
between different modules

● Difficulties in Scaling
● Updating to new version requires complete

re-install
● Problem in one module can cause the

whole application to crash
● Difficult to move to a new framework or

technology

Microservices Architecture

● API contract between different
modules/service ensures that each module
can be developed and maintained
independently

● Each service can be scaled independently
● Updating to new version requires only

updates to a specific services
● Allows for easier CI/CD

Evolution of the Ecosystem

Challenges with the Microservices Architecture

Challenges with the Microservices Architecture

Challenges with the Microservices Architecture

Challenges with the Microservices Architecture

Challenges with the Microservices Architecture

Challenges with the Microservices Architecture

Service Mesh as a Solution

A Service Mesh is the substrate between different
microservices that makes connectivity between different

microservices possible. In addition to providing
networking, a Service Mesh can also provide other
features like Service Discovery, Authentication and

Authorization, Monitoring, Tracing and Traffic Shaping.

Sidecar Pattern

 Istio

Istio

● Open Sourced by
Google, IBM & Lyft in
May 2017

● Service Mesh designed
to connect, secure and
monitor microservices

Istio Features

● Automatic load balancing for HTTP, gRPC, WebSocket,
and TCP traffic.

● Fine-grained control of traffic behavior with rich routing
rules, retries, failovers, and fault injection.

● A pluggable policy layer and configuration API supporting
access controls, rate limits and quotas.

● Automatic metrics, logs, and traces for all traffic within a
cluster, including cluster ingress and egress.

● Secure service-to-service communication in a cluster with
strong identity-based authentication and authorization.

Istio Architecture

Istio Architecture

● Envoy: high-performance proxy developed in C++ provides Dynamic service discovery, Load
balancing, TLS termination, HTTP/2 and gRPC proxies, Circuit breakers, Health checks, Staged
rollouts with %-based traffic split, Fault injection, Rich metrics

● Pilot: The core component used for traffic management in Istio is Pilot, which manages and configures
all the Envoy proxy instances deployed in a particular Istio service mesh

● Mixer: Mixer is a platform-independent component. Mixer enforces access control and usage policies
across the service mesh, and collects telemetry data from the Envoy proxy and other services. The
proxy extracts request level attributes, and sends them to Mixer for evaluation

● Citadel: Citadel provides strong service-to-service and end-user authentication with built-in identity
and credential management. You can use Citadel to upgrade unencrypted traffic in the service mesh.
Using Citadel, operators can enforce policies based on service identity rather than on network controls

Istio Gateway

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: httpbin-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "httpbin.example.com"

Gateway describes a load
balancer operating at the
edge of the mesh
receiving incoming or
outgoing HTTP/TCP
connections.

Istio VirtualService

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: reviews-route
spec:
 - route:
 - destination:
 host: reviews.prod.svc.cluster.local
 subset: v2
 weight: 25

 - destination:
 host: reviews.prod.svc.cluster.local
 subset: v1
 weight: 75

A VirtualService defines a
set of traffic routing rules to
apply when a host is
addressed. Each routing rule
defines matching criteria for
traffic of a specific protocol. If
the traffic is matched, then it
is sent to a named destination
service (or subset/version of
it) defined in the registry.

Istio DestinationRule

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: bookinfo-ratings
spec:
 host: ratings.prod.svc.cluster.local
 trafficPolicy:
 loadBalancer:
 simple: LEAST_CONN

DestinationRule defines policies
that apply to traffic intended for a
service after routing has
occurred. These rules specify
configuration for load balancing,
connection pool size from the
sidecar, and outlier detection
settings to detect and evict
unhealthy hosts from the load
balancing pool.

 Linkerd

Linkerd

● Initially started as a
network proxy (v1.0)
for enabling service
mesh

● Merged with Conduit to
form Linkerd 2.0 in
Sept 2018

Linkerd Architecture

● Controller: The controller consists of multiple containers (public-api, proxy-api,
destination, tap) that provide the bulk of the control plane’s functionality

● Web: The web deployment provides the Linkerd dashboard

● Prometheus: All of the metrics exposed by Linkerd are scraped via
Prometheus and stored. An instance of Prometheus that has been configured
to work specifically with the data that Linkerd generates is deployed

● Grafana: Linkerd comes with many dashboards out of the box. The Grafana
component is used to render and display these dashboards. You can reach
these dashboards via links in the Linkerd dashboard itself.

Linkerd Architecture

● Linkerd’s philosophy is to be a very lightweight addition on
top of existing platform

● No need to be a Platform admin to use linkerd
● Simple installation and CLI tools to get started
● Small sidecar proxy written in Rust
● Can do end-to-end encryption and automatic proxy

injection
● Lacks complex routing and tracing capabilities

Linkerd Capabilities

Linkerd Commands

Install:
linkerd check --pre
linkerd install | kubectl apply -f -

Inject:
kubectl get -n emojivoto deploy -o yaml \
 | linkerd inject - \
 | kubectl apply -f -

Inspect:
linkerd -n emojivoto stat deploy
linkerd -n emojivoto top deploy
linkerd -n emojivoto tap deploy/web

 Consul
 Connect

Consul Connect

● Consul is a highly available
and distributed service
discovery and KV store

● Consul Connect augments
Consul and adds Service Mesh
Capabilities and was added in
July 2018

Consul Connect Features

● Provides secure service-to-service communication with
automatic TLS encryption and identity-based authorization.

● Uses envoy proxy sidecar as the dataplane
● Integration with Vault for certificate and secret management
● Service discovery already provided by Consul
● Useful if you want to use services outside Kubernetes as

Consul can do a 2 way sync between k8s services and
Consul services

● No routing features. Main focus on service discovery and
Service Identity management

 Conclusion

Conclusion

Feature Istio Linkerd Consul Connect

Traffic Redirection
(Blue/Green deployment) Yes No No

Traffic Splitting
(Canary deployment) Yes No No

Attribute based routing Yes No No

Service Identification Yes No Yes

Auto Proxy Injection Yes Yes Yes

Non-Admin installation No Yes No

Built-in Dashboard Yes Yes No

Certificate Management Yes No Yes

Conclusion

Feature Istio Linkerd Consul Connect

Metrics Collection Yes Yes No

Built-In Dashboard Yes Yes No

TLS Yes Yes Yes

External Service Support Yes No Yes

Rate Limiting Yes No No

Tracing Yes No No

Appendix (BookInfo App)

Appendix (Emojivoto App)

