
OpenDaylight
Current and Future Use Cases

Abhijit Kumbhare
OpenDaylight Technical Steering Committee (TSC) Chair

Principal Architect / System Manager, Ericsson

Agenda

› OpenDaylight Overview and Architecture

› OpenDaylight Use Cases (Partial List)

I. Network Abstraction

II. ONAP

III. AI/ML with OpenDaylight

IV. Network Virtualization

V. ODL in OSS

› OpenDaylight: Getting Involved

› Acknowledgements

› Q & A

OpenDaylight Overview and Architecture

A month ago …

• Dinner Discussion with Phil Robb,

VP of Operations, Networking &

orchestration, Linux Foundation at

the ONS Europe

– Topic: our first OpenDaylight Meetings

• November 2012

Nostalgic post by Dave Meyer, first ODL TSC chair on Facebook
about first release Hydrogen in Jan 2014

Realization: We’re a bit old …

› But that’s great!!

– We’ve got old timers

AND

– We’ve always been adding new

developers

› As far as open source

communities go – 6 years is

like 60 dog years!!!

• Code: To create a robust,
extensible, open source code
base that covers the major
common components required
to build an SDN solution and
create a solid foundation for
Network Functions
Virtualization (NFV)

• Acceptance: To get broad
industry acceptance amongst
vendors and users

• Community: To have a thriving
and growing technical
community contributing to the
code base, using the code in
commercial products, and
adding value above and
around.

OpenDaylight Now

• Mature, Open Governance

• 900 Contributors

• Over 100 deployments

• Multiple use cases

• Dozens of ODL-based solutions

• Mature code base – continued robust

contributions even after 5+ years

• Focus on performance, scale and extensibility

https://opendaylight.biterg.io/

Service Abstraction Layer

• Initial SDN controllers

– Controller application APIs strongly tied to OpenFlow

– Hence applications developed limited to a single southbound protocol

• OpenDaylight Goal

– Decouple the application API from the southbound protocol plugins - be that

Openflow, NETCONF, OVSDB, PCEP, BGP, SNMP, or whatever.

• How to achieve the goal?

– Use an abstraction layer – or what is called by OpenDaylight as Service

Abstraction Layer or SAL

API Driven SAL (AD-SAL)

• Initial attempt at abstraction

– API-Driven SAL, for communicating more

directly with devices, using protocol(s)

associated with the specific API.

• However abstraction difficult to realize in

practice than it was in theory

• AD-SAL became a collection of

independent and discrete APIs, with

one set of APIs for each and every

southbound protocol

• AD-SAL was soon deprecated in

OpenDaylight.

SDN Application

AD-SAL

OpenFlow NetConf

Network Devices

Model

So how to achieve true abstraction?

• Alternatives

– Build a better SAL

• Take the existing APIs for the different
plugins, and attempt to come up with an
API abstraction that meets all of their
needs

– Use models

• Implement a model layer within the SAL
which has SDN applications dealing with
software models of network devices,
rather than directly with the devices
themselves.

• This was the approach taken by
OpenDaylight – to develop a Model
Driven SAL or the MD-SAL built around
Yang models

SDN Application

AD-SAL

OpenFlow NetConf

Network Devices

YANG

• Data modeling language that is also

the preferred configuration language

for NETCONF protocol

• Further reads:

– YANG introductory tutorial

– RFC 6020 - YANG - A data

modeling language for NETCONF

– RFC 7950 – The YANG 1.1 Data

Modeling Language

module model1 {

namespace "urn:model1";
prefix model1;
yang-version 1;

revision 2015-04-06 {
description "Initial revision";

}

grouping A {
list B {

key id;
leaf id {

type uint32;
}
leaf D {

type uint32;
}

}
}

container C {
uses A;

}
}

http://www.slideshare.net/tailfsystems/netconf-yang-tutorial
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950

What can YANG model?

• Data
– Config data

– Operational

• RPCs:
– Perform procedure call with

input/output,
without worrying about actual provider
for that procedure

• Notifications:
– Publish one or more notifications to

registered listeners

› Applications built defining models

› YANG used for defining models

› Compilation results in the skeleton of

application: model, RESTCONF API, etc.

MD-SAL Application Creation Process

› Elements in red color above is the app

skeleton

› The model implementation (green) is

where you will write code to do whatever

it is that your application or the model

within your application does

Yangtools – What does Yangtools do?

• Generates Java code from Yang

• Provides ‘Codecs’ to convert

– Generated Java classes to Document Object

Model (DOM)

– DOM to various formats

• XML

• JSON

• Etc

• ‘Codecs’ make possible automatic:

– RESTCONF

– Netconf

– Other bindings

Java
code

xml

json

Yang to Java benefits

– Consistent Data Transfer Objects
(DTOs) everywhere

• Automated Bindings:
– restconf

– netconf

• Consistent:

– reduce learning curve

• Immutable: to avoid
thread contention

• Improvable – generation
can be improved and all
DTOs get those
improvements immediately
system wide

Module model1
Namespace “urn:model1”

MD-SAL

• Model-driven SAL is the kernel of the OpenDaylight controller

• It manages the contracts and state exchanges between every application. It does this

adaptation by managing centralized state

• Takes in the YANG model at runtime and constructs the tree in the data store

C

B

id=1

Leaf D

Val=9

Leaf D

Val=16
Leaf D

Val=2

B

id=2

B

id=3

/restconf/config/model1:C

/restconf/config/model1:C/B/3

Model-Driven Service
Abstraction Layer (MD-SAL)

OpenDaylight Architecture - Simplified View

Notifications

RPCs

YANG Models

Data

App/
Service

App/
Service

Plugin Plugin

Controllers in
a Cluster

An Aspect of the architecture: ODL is a µ-services platform

Model-Driven SAL
(MD-SAL)

Netconf
Client

Network DevicesNetwork DevicesNetwork Devices

Protocol
Plugin

...Netconf
Server RESTCONF ApplicationApplication

REST

ApplicationsApplicationsOSS/BSS, External Apps

Data Store
Messaging

“Kernel”

Microservices

Namespace

OpenDaylight Platform

Data Plane Elements (Virtual Switches, Physical Devices)

Interfaces & Protocol Plugins

Platform Services

OpenDaylight APIs

Network Services And Applications

Data Store (Config & Operational)

OpenDaylight Architecture - Operational View

Messaging (Notifications / RPCs)

Third Party Applications (Orchestration, Control Plane, UI, etc.)

Protocol
Plugin

Model

API

Application
(Processing)

API

Model

OpenDaylight Platform (Yangtools, MD-SAL)

OpenDaylight Fluorine Release

OVSDBNETCONFLISP PCEP SNMPOpenFlow

OpenDaylight APIs (REST/RESTCONF/NETCONF)

Data Store (Config & Operational) Messaging (Notifications / RPCs)

Orchestration Applications

BGP

Network Services And ApplicationsPlatform Services

• Authentication, Authorization and Accounting

• Data Export Import

• Infrastructure Utilities

• JSON-RPC Extension

• Time Series Data Repository

• Container Orchestration Engine

• Genius Framework

• Honeycomb/Virtual Bridge Domain

• LISP Flow Mapping Service

• NEMO **

• Network Virtualization

SXP Southbound Interfaces &
Protocol Plugins

Controller
Services/Applications

Northbound API

Platform

• Neutron Service

• Service Function Chaining

• Transport PCE*

• Unified Secure Channel Manager **

• User Network Interface Manager

Third Party AppsControl Plane Applications Other Applications (e.g. Vendor UI)

Data Plane Elements
(Virtual Switches, Physical

Device Interfaces)

BMP

* First release for the project
** Not included in Fluorine distribution - separate download

OpenDaylight Architecture: Key Takeaway

• OpenDaylight architecture is amenable to be applied to a

variety of use cases as:

– Not tied to a particular protocol

– Modular, Extensible

– Has built-in tools to simplify application development

OpenDaylight Use Cases (Partial List)

Note

OpenDaylight architecture has been used in many use cases –

not all covered here

Use Case I

Network Abstraction

Management Interfaces
(Netconf, REST, OVSDB)

White Box
Device

Traditional
Network device

Control Interfaces
(OpenFlow, BGP, PCEP)

OpenDaylight

Orchestration/OSS/Cloud plugin

Network Services API
(Path, Tunnel, L2/L3/L4 Service, Service Assurance, etc)

Provides Network Services
API for Network
Automation
in a Multi Vendor Network

Use Case II

ONAP Project

SDN-C & App-C based on
OpenDaylight code

Use Case III (future)

AI/ML with OpenDaylight

Smart SDN Controller
• Network status awareness

➢Rely on time series data
collected from the network

• Traffic Control Policy Change
decision making

➢ Based on the advanced analytics
and machine learning.

• Dynamic change of Control policies

➢ Automatically change the traffic
control policies based on the
analytics results.

Time Series Data
Collection

Advanced Analytics
& Machine Learning

Automated Traffic
Control

Why we need Machine Learning in SDN

• Software Defined Networks needs to be intelligent.

– To be aware of the runtime status of the network.

– To make the right decisions that adjust the policies for traffic
classification and traffic shaping.

– To dynamically change the policies according to the analytics
results.

• AI / MI can be used to establish normalized profiles and
dynamically update the profiles based on a set of
predetermined or dynamically learned rules.

Use Cases of a smart and intelligent SDN controller

➢ Traffic Control and Routing
Optimization

– Congestion Control

– Traffic Pattern Prediction

– Routing Optimization

➢ Resource optimization
– Networking resource allocation

optimization

– Cloud resource management
optimization

➢ Security and Anomaly Detection

– DDoS attack detection and

mitigation

➢ Troubleshooting and Self-

healing

AI/ML Example Use Case

Traffic congestion prediction with automated control

ODL AI/ML framework in the ODL ecosystem

• Enable AI/ML on both historical
and real-time data paths.

• Many use cases would require
both offline and online ML on
the time series data.

• External events could be
additional input for accurate
machine learning results.

• Feed back the results to SDN
control path for automatic traffic
steering and policy placement.

• Well-defined interface among
the components towards future
standardization of advanced
analytics in SDN.

ODL AI/ML framework PoC Architecture

• PoC of both historical
offline machine learning
and real-time online
machine learning

➢ Collect the time series
data

➢ Persist into scalable data
storage

➢ Publish to high
performance data bus

• Integrate with external
machine learning libraries

➢ Spark MLlib

➢ DeepLearning4J

➢ Future: TensorFlow?

• Collect OpenFlow Stats
and apply machine
learning algorithms

➢ k-means clustering

Prediction using Weka leveraging data collected in TSDR

Use Case IV

Network Virtualization

• A set of projects working in tandem to provide network virtualization

(overlay connectivity) inside and between data centers for Cloud SDN

use case

– VxLAN within the data center

– L3 VPN across data centers

• Integration with OpenStack Neutron and Kubernetes (in-progress)

• Uses Open vSwitch and hardware VTEPs (ToR) as the datapath

Network Virtualization: OpenDaylight Components

OF NSFs
ELAN Service

OpenDaylight NB APIs (REST)

OVSDB

Model-Driven service abstraction layer (MD-SAL) (plug-in mgr., capability abstractions, …)

Forwarding
Rules Mgr

ODL Platform

Neutron NB

Network NSFs

FIB Manager

VPN Mgr

NetVirt Services

BGP Protocol Engine
(Quagga)

MP-BGP Interface

HWVTEP

Notification broker

YANG tools

MD-SAL datastore

ODL InfrastructureLegend ODL Netvirt External module

Internal
Transport
Manager

ID Manager

Interface
Manager

Lock Manager
Liveness
Manager

GENIUS

ACL service

DHCP Service

NAT Service

IPv6 control service

L2GW Handler

ODL GENIUS

OF 1.3

ODL

Clustering

Inventory
Mgr

Cardinal
(SNMP)

AAA

Misc Services

DAEXIM

QoS Service

One Application / Service

Interconnect Interconnect

A common controller platform

Virtual Network Functions Hardware AppliancesContainerized Network Functions

DCGW Fabric Fabric NMSCNI Neutron

Plugin Plugin BGPVPN EVPN OVSDB

Uniform service
capabilities

Common
dashboard

Simplified
troubleshooting

Simplified
interworking

Reduced training
And validation

Infra Kubernetes (bare metal)

Openstack (containerized)

VNF VNF VNF

CNF CNF CNF

OpenDaylight multi-instance controller

CNF CNF

Tenant K8s
(VM’s)

Tenant K8s
(VM’s)

Tenant K8s
(VM’s)

Kuryr CNI

CNF CNF CNF CNF

Neutron Opendaylight driver

OpenDaylight CNI

Openstack VM’s

Containerized applications on per tenant hosted K8s

CNF on bare metal K8’s
Kuryr CNI Kuryr CNI

OpenDaylight Container Orchestration Engine

• Current Status

– Hybrid scenario:
• Openstack and Kubernetes side by side

– Integration with ODL via Openstack Kuryr

– Supports Multinode environment

– Supports container in a VM scenario

– Baremetal scenario
• Kubernetes only

– Tight integration with ODL NetVirt

– Supports Pod 2 Pod networking L2/L3

• Future Scenarios

• Support for non-OF
southbound

• NetConf

• Testing with L3VPN for multi-
tenant scenarios

• Scale testing & improvement

Use Case V

OpenDaylight in OSS (future)

• Based on ACTN (Abstraction of Control of Traffic Engineered Network)

IETF Standard for realizing hierarchical SDN architecture

– Yang Based (NetConf/RESTCONF) Models

WAN Transport Orchestrator (WAN-O)

› Coordination of resources across multiple
independent networks and multiple
technology layers to provide end-to-end
services

› Layered operational model:

– Customer: issuing a service request
from catalog

– Service Provider: dealing w/ Customer
and providing the service (may or may
not own the network(s) as such)

– Network Provider: infrastructure
providers owning the physical
network(s) and building the
infrastructure

SDN Hierarchical architecture based on ACTN

CNC - Customer Network

Controller

MDSC - Multi Domain

Service Coordinator

PNC - Provisioning

Network Controller

CMI - CNC-MDSC Interface

MPI - MDSC-PNC Interface

SBI - South Bound Interface

MDSC NBI:

– CMI: CNC to MDSC interface

– YANG based (Netconf/Restconf)

– End to end Virtual Network concept

– Unified end to end topology

MDSC SBI:

– MPI: MDSC to PNC interface

– YANG based (Netconf/Restconf)

– Per domain TE-Tunnels

– White or Black Domain topology

WAN-O as MDSC, interfaces

CNC - Customer Network

Controller

MDSC - Multi Domain Service

Coordinator

PNC - Provisioning Network

Controller

CMI - CNC-MDSC Interface

MPI - MDSC-PNC Interface

SBI - South Bound Interface

SDNc
Operator 1

Service Orchestration (Operator 1)

Transport Network architecture

WAN-O

AP1

SDNc
Operator 1

SDNc
Operator 2

SDNc
Operator 3

ASBR

ASBR

ASBR

ASBR
ASBR

ASBR

ASBR

ASBR

AP2

ASBR

Inter domain link White topology domain Black topology domain

AP3

- IETF ACTN MPI
- White topology

- IETF ACTN MPI
- Black topology

WAN Ctrl –

PNC 1

WAN Ctrl –

PNC n
WAN Ctrl –

Microwave

Mini-Link, R6000

….

….

PE

3rd pp IP/Optical

BSS

Service (L2/L3 VPN)

WAN Transport (Intra domain RSVP / SR, inter domain BGP LU LSP)

1

2

CPE

1. Service Orchestration

2. WAN Transport SDN

(Underlay)

END to END service orchestration
Connectivity services

e2e Orchestrator

NFV-O
WAN-O Transport

Orchestrator

Service Orchestration

WAN Ctrl –

PNC 1

WAN Ctrl –

PNC n
WAN Ctrl –

Microwave

Mini-Link, R6000

….

….

PE DC
GW

VM

vSwitch
OF / Netconf

VIM (Virtual

Infra Mgr)

DC Ctrl

Net Virt

3rd pp IP/Optical
(MP)-BGP

peering Telco DC

ACTN MPI

Service (L2/L3 VPN)

WAN Transport (Intra domain RSVP / SR, inter domain BGP LU LSP)

DC Overlay transport

(VXLAN, GRE)

3
CPE

1. Service Orchestration

2. WAN Transport SDN

(Underlay)

3. Network Virtualization

(Overlay)

Nf-Vi

NFVi

END to END service orchestration
VNF services

1

2

e2e Orchestrator

NFV-O

BSS

Service Orchestration

WAN-O Transport

Orchestrator

OpenDaylight: Getting Involved

Avenues for getting involved

• OpenDaylight Wiki: https://wiki.opendaylight.org

• Mailing Lists:

– Central / Cross Project: https://wiki.opendaylight.org/view/Mailing_Lists

– Complete List including individual projects:

https://lists.opendaylight.org/mailman/listinfo

• Chat with developers via IRC: https://wiki.opendaylight.org/view/IRC

• Meetings:

– Technical Steering Committee: https://wiki.opendaylight.org/view/TSC:Meeting

– Technical Work Stream:

https://wiki.opendaylight.org/view/Tech_Work_Stream:Main

– Complete List including individual projects:

https://wiki.opendaylight.org/view/Meetings

https://wiki.opendaylight.org/
https://wiki.opendaylight.org/view/Mailing_Lists
https://lists.opendaylight.org/mailman/listinfo
https://wiki.opendaylight.org/view/IRC
https://wiki.opendaylight.org/view/TSC:Meeting
https://wiki.opendaylight.org/view/Tech_Work_Stream:Main
https://wiki.opendaylight.org/view/Meetings

Areas to getting involved in

• OpenDaylight Documentation Project

• Project of your interest

– https://wiki.opendaylight.org/view/Project_list

– Code Reviews

– Bug Fixing

• MD-SAL & Clustering (Distributed Systems)

– Experts

– Enthusiasts: Improve your skills in these hot & in-demand area

• Scale & Performance

• Testing

• Architecture Improvements

– Example: Scalable and Robust Data Replication using etcd.

https://wiki.opendaylight.org/view/Project_list

Acknowledgements

Contributors to slides

– Antonio De Gregorio

– Colin Dixon

– Daniele Ceccarelli

– Dayavanti Kamath

– Francois Lemarchand

– Frederick Kautz

• Jan Medved

• Luis Gomez

• Prem Sankar Gopanan

• Scott Melton

• Srini Seetharaman

• YuLing Chen

• Reference

• https://github.com/BRCDcomm/BVC/wiki/MD-SAL

Q & A

