OPEN SOURCE NETWORKING DAYS

A * _w “ . :,,,_,,,/ //./,_,,7_

\ /A

L\
EY //, //

Wu

|

A

M W\ ///.//, \

! z,,” ///,//////MM,/, Mﬂ///
" N
AL

/_///

At
iy

\
¥

)

i
i

\
i

)
\

\
/W

\\

\
i\
\
\

\

\ /, /

/,/,,_/_
,////
)

//c,., L0

h

se Cases

urrent and Futur

7

OpenDaylight Technical Steering Committee (TSC) Chair

Principal Architect / System Manager, Ericsson

Abhijit Kumbhare

» OpenDaylight Overview and Architecture

» OpenDaylight Use Cases (Partial List)
l. Network Abstraction
II. ONAP
lIl. Al/ML with OpenDaylight
I\VV. Network Virtualization
V. ODLiInOSS
» OpenDaylight: Getting Involved
» Acknowledgements

»y Q& A

OpenDaylight Overview and Architecture

A month ago ...

* David Meyer
"\E\f\' September 23 at 9:23 AM - ©

 Dinner Discussion with Phil Robb,
VP of Operations, Networking &
orchestration, Linux Foundation at

the ONS Europe
— Topic: our first OpenDaylight Meetings

* November 2012

@O You, Jeff Tantsura, Anil Vishnoi and 11 others 2 Comments

ib Like (J comment ¢ Share

Nostalgic post by Dave Meyer, first ODL TSC chair on Facebook
about first release Hydrogen in Jan 2014

* Code: To create a robust,
extensible, open source code
base that covers the major
common components required

Ope N DaYI |ght to build an SDN solution and
Project Goals

create a solid foundation for
Network Functions
Virtualization (NFV)

* Acceptance: To get broad
industry acceptance amongst
vendors and users

* Community: To have a thriving
and growing technical
community contributing to the
code base, using the code in
commercial products, and
adding value above and
around.

OpenDaylight Now

Mature, Open Governance 6431 Lo e e
900 Contributors

Over 100 deployments

Multiple use cases

Dozens of ODL-based solutions

Mature code base — continued robust
contributions even after 5+ years

Focus on performance, scale and extensibility

https://opendaylight.biterg.io/

Service Abstraction Layer

Initial SDN controllers

Controller application APIs strongly tied to OpenFlow

Hence applications developed limited to a single southbound protocol
OpenDaylight Goal

Decouple the application API from the southbound protocol plugins - be that
Openflow, NETCONF, OVSDB, PCEP, BGP, SNMP, or whatever.

How to achieve the goal?

Use an abstraction layer — or what is called by OpenDaylight as Service
Abstraction Layer or SAL

API Driven SAL (AD-SAL)

Initial attempt at abstraction

— API-Driven SAL, for communicating more
directly with devices, using protocol(s)
associated with the specific API.

However abstraction difficult to realize in
practice than it was in theory
« AD-SAL became a collection of
independent and discrete APIs, with
one set of APIs for each and every
southbound protocol
AD-SAL was soon deprecated in
OpenDaylight.

{ AD-SAL J

vor] [’
|

Network Devices

So how to achieve true abstraction?

« Alternatives [SDN Application J
— Build a better SAL

« Take the existing APIs for the different
plugins, and attempt to come up with an

API abstraction that meets all of their
needs AD-SAL

— Use models

* Implement a model layer within the SAL Model
which has SDN applications dealing with
software models of network devices,

rather than directly with the devices
themselves.

» This was the approach taken by
OpenDaylight — to develop a Model
Driven SAL or the MD-SAL built around
Yang models

OpenFIow NetConf

Network Devices

Data modeling language that is also
the preferred configuration language
for NETCONF protocol

Further reads:

— YANG Iintroductory tutorial

— RFC 6020 - YANG - A data

modeling language for NETCONF

— RFEC 7950 — The YANG 1.1 Data

Modeling Language

module modell {

}

namespace
prefix modell;
yang-version 1;

revision 2015-04-06 {
description

}

grouping A {
Tist B {
key 1id;
Teaf id {
type uint32;
ks
leaf D {
type uint32;
}
}
}

container C {
uses A;

}

http://www.slideshare.net/tailfsystems/netconf-yang-tutorial
https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950

What can YANG model?

« Data
— Config data
— QOperational

« RPCs:
— Perform procedure call with
input/output,
without worrying about actual provider
for that procedure

 Notifications:

— Publish one or more notifications to
registered listeners

Standard
Models

Proprietary
Models

il

config‘data

RPCs

notifications

containers

leafs

.

types

MD-SAL Application Creation Process

Compile

Define mode!

model

Implement
your model’'s
functionality

C e D

Openflow gl NETCONF |

» Applications built defining models > Elements in red color above is the app

» YANG used for defining models skeleton

» Compilation results in the skeleton of » The model implementation (green) is
application: model, RESTCONF AP, etc. where you will write code to do whatever

it is that your application or the model
within your application does

Yangtools — What does Yangtools do?

« Generates Java code from Yang

 Provides ‘Codecs’ to convert

— Generated Java classes to Document Object
Model (DOM)

— DOM to various formats
« XML
« JSON
« Etc

 ‘Codecs’ make possible automatic:
— RESTCONF
— Netconf
— Other bindings

Yang to Java benefits

— Consistent Data Transfer Objects - Immutable: to avoid
(DTOs) everywhere thread contention
* Automated Bindings: « Improvable — generation
— restconf can be improved and all
— netconf DTOs get those
Improvements immediately
system wide

« Consistent:
— reduce learning curve

Model-driven SAL is the kernel of the OpenDaylight controller

It manages the contracts and state exchanges between every application. It does this
adaptation by managing centralized state

Takes in the YANG model at runtime and constructs the tree in the data store

Module modell
Namespace “urn:modell”

/restconf/config/modell:C

/restconf/config/modell:C/B/3

OpenDaylight Architecture - Simplified View

App/ App/
Service Service

OPEN
DAYLIGHT

An Aspect of the architecture: ODL is a p-services platform

OSS/BSS, External Apps Network Devices

{ RESTCONF] see Microservices

v v

Model-Driven SAL
(MD-SAL)

N

Namespace

| 'SE‘EH{T;HT OpenDaylight Architecture - Operational View

__

__

SRR, B T T T VTV TTT TR TTES \
:) . : S e \
' Platform Services : : Network Services And Applications ! [Applicati Model !
| P PP | beang || Y2

Data Store (Config & Operational) OpenDaylight Platform Messaging (Notifications / RPCs)

APl
1

Interfaces & Protocol Plugins

Data Plane Elements (Virtual Switches, Physical Devices)

e -) T :
] Orchestration Applications : i Control Plane Applications i : Other Applications (e.g. Vendor Ul) : Third Party Apps
S) | e |

OpenDaylight APIs (REST/RESTCONF/NETCONF)

Platform Services Network Services And Applications

» Authentication, Authorization and Accounting * Container Orchestration Engine « Neutron Service
» Data Export Import * Genius Framework + Service Function Chaining
* Infrastructure Utilities * Honeycomb/Virtual Bridge Domain » Transport PCE* c "
. ontroller
JSON-RPC Extension Services/Applications
» Time Series Data Repository * NEMO ** » User Network Interface Manager

* Network Virtualization

,___________________
3

]
I
I
I
I
I
l
I
* LISP Flow Mapping Service * Unified Secure Channel Manager ** :
I
I
I
I
I
I
I
I
]

Platform

Data Store (Conﬁg & Operationa|) Open Daylight PlathI’m (Ya ngtOOIS, M D'SA:. Messaging (Notifications/ RPCs)

LISP NETCONF OpenFlow OVSDB Southbound Interfaces &
Protocol Plugins

‘ . . : , Data Plane Elements
(Virtual Switches, Physical
‘ ‘ Device Interfaces)

* First release for the project
** Not included in Fluorine distribution - separate download

OpenDaylight Architecture: Key Takeaway

OpenDaylight architecture is amenable to be applied to a
variety of use cases as:

Not tied to a particular protocol

Modular, Extensible

Has built-in tools to simplify application development

OpenDaylight Use Cases (Partial List)

OpenDaylight architecture has been used in many use cases —
not all covered here

Use Case |

Network Abstraction

Network Services API
(Path, Tunnel, L2/L3/L4 Service, Service Assurance, etc)

\ 4

OpenDaylight
A

Control Interfaces { I } Management Interfaces
(OpenFlow, BGP, PCEP) (Netconf, REST, OVSDB)
\/ Provides Network Services
API for Network
Automation
it Traditional in a Multi Vendor Network

Device Network device

Use Case |l

ONAP Project

| ossyess] onApcu | u-Ul_ | ONAP Portal

o A\l
Dashboard OA&M (VID) RUN-TIME N
@
. . an
Resource Onboarding) DCAE Service Common E
. - Policy Orchestration Services s
Service & Product Design Framework Correlation Project A&AI/ESR 2 £
Policy Creation & Validation Engine (Holmes) % @ i) g :
() |
& S Sl E
MSB/DMAAP 2 = € £ g |
$ < = 9O (7] ‘
. _ = Virtual Logging 9 = 2 5] 9] !
Change Management Design Multi-viM/Cloud ‘ Application . D) B T =
SDN-C Controller Hincton MuUSIC S o o =S !
Design Test & Certification infrastructione (LO-L3 Controller) | (APPC) Controller T € _-g T
Adaptation Layer ‘ (VF-C) Others oo e f>0 !
\ L (I-4'|-7) \ (Note 1) § § L
——
(o - S (T T T— : o
: External Systems 3rd Party Controller SVNFM EMS ! >
 NetworkFunctiontayer | vie. N B
Recipe/EngRules&PollcyDistrlbu!lon 1:‘-::‘-::.‘-::::::::::::::::::"-::::::::::::::‘-:::::::"""'::’-::::::::::::::::: PNFs E‘JI} ;C
| Hypervisor / OS Layer| OpenStack Commercial VIM K8S Public Cloud e 8§
Note 1 - VF-C is ETSI-aligned. o — - S g O P e S T ., o o~ ot P ,_;E >
CS,T,,}_\ ~ MPLS e P /@) &
Edgecloud)™ Qbccioud) Pl

SDN-C & App-C based on
OpenDaylight code

Use Case Il (future)

Al/ML with OpenDaylight

Smart SDN Controller

* Network status awareness

Advanced Analytics » Rely on time series data
i i collected from the network
l ‘ Traffic Control Policy Change
Automated Traffic

decision making

_ _ » Based on the advanced analytics
hneaciesData and machine learning.
« Dynamic change of Control policies

» Automatically change the traffic
control policies based on the
analytics results.

Why we need Machine Learning in SDN

Software Defined Networks needs to be intelligent.
To be aware of the runtime status of the network.

To make the right decisions that adjust the policies for traffic
classification and traffic shaping.

To dynamically change the policies according to the analytics
results.

Al / Ml can be used to establish normalized profiles and
dynamically update the profiles based on a set of
predetermined or dynamically learned rules.

Use Cases of a smart and intelligent SDN controller

» Traffic Control and Routing » Security and Anomaly Detection
Optimization — DDoS attack detection and
— Congestion Control mitigation
— Traffic Pattern Prediction
— Routing Optimization > Troubleshooting and Self-
» Resource optimization healing
— Networking resource allocation
optimization
— Cloud resource management
optimization

Al/ML Example Use Case

Traffic congestion prediction with automated control

(1) Collect stats from the network and
~ store into TSDR

OpenDaylight

=)
(=

| (7)) Data analysis through data analytics
(g "‘:, SDNController e : . .
RER ﬂ‘ L _i 1) — W ?I = SMEINES integration
- | o) ‘ TSR ’7-_, { b j (3) Traffic flow redirection from A->F
\ C 3) ‘ to A->B->F and A->D->E->F
‘ |
—

Persuﬁtence Data Store

hostl host2

SDN controlled

OpenDaylight + TSDR
network

- Predicted congestion path in the next 24 hours

- Healthy path in the next 24 hours

ODL AI/ML framework in the ODL ecosystem

 Enable Al/ML on both historical
PEN and real-time data paths.

 Many use cases would require
. DL Al/ML both-offllne gnd online ML on
- . the time series data.

External Event \ e External events could be
additional input for accurate

Other ODL T<DR machine learning results.

= - * Feed back the results to SDN

control path for automatic traffic
steering and policy placement.

Historical ML

Real-ti ML .~
sal-tme ’ Data Path

Data F'atl;f “
. P

 Well-defined interface among
the components towards future
standardization of advanced
analytics in SDN.

ODL AI/ML framework PoC Architecture

Offline Machine
Learning

A

Learning

Query the Flow Size metric

REST APIs

Machine Learning Historical Data Query
Accelerator
!

Map Reduce

Task Generator = . - _ o Data Purging

- N |

Online Machine

> I 4
J1133W 3ZIS MO|4 3y} 3WnNsuo)

Flow Size Clusters
Visualization

Dispatch RDD

»

" Seoming

ODL TSDR

(HBase/Cassandra) . Data Aggregation

Kafka High Performance Data Bus

Historical

A ~ OpenFlowStats
Persist the Flow Size metric Collector

4
N

| Opggﬁ.\,’lswitch,.

Kafka Plugin h1 8 h2 = h3 '

~

Publish the Flow Size metric

Mininet

Real-time

PoC of both historical
offline machine learning
and real-time online
machine learning

» Collect the time series
data

> Persist into scalable data
storage

» Publish to high
performance data bus

Integrate with external
machine learning libraries

» Spark MLIib

» DeeplLearning4J

» Future: TensorFlow?
Collect OpenFlow Stats

and apply machine
learning algorithms

» k-means clustering

UL
UYL
350 | LH_A_I || U

5933888

X 3 8 8 8
e

Gausssian Linear Regression

Predicted By
h algorithm

/ \ \— Bandwidth

Ll utilisation
of a port
using

A Weka

N
Jiz
<:’/—'
8 888833888
o
ul

B i
8 8

20 25 30 35 (o) 5 10 15 20 25 30 35

Multilayer Perceptron SMOReg —

Use Case IV

Network Virtualization

A set of projects working in tandem to provide network virtualization

(overlay connectivity) inside and between data centers for Cloud SDN
use case

— VXLAN within the data center
— L3 VPN across data centers

Integration with OpenStack Neutron and Kubernetes (in-progress)
Uses Open vSwitch and hardware VTEPs (ToR) as the datapath

Network Virtualization: OpenDaylight Components

2l openstack

kubernetes

OF NSFs

Legend

Network NSFs NetVirt Services GENIUS

ODL Platform

Model-Driven service abstraction layer (MD-SAL) (plug-in mgr., capability abstractions, ...)

D @ &

External module

ODL

BGP Protocol Engine
(Quagga)

A common controller platform

Containerized Network Functions

(:) Uniform service

<) capabilities

One Application / Service

Virtual Network Functions

Interconnect

)

OO" Simplified
o interworking

1

Interconnect

DAY LIGHT

Reduced training
And validation

—_—

Hardware Appliances

e
e
e
e
e

Simplified
troubleshooting

(= o}

g

Common
dashboard

OpenDaylight multi-instance controller

Containerized applications on per tenant hosted K8s

Tenant K8s Tenant K8s Tenant K8s

Openstack VM'’s

CNF on bare metal K8’s
Neutron Opendaylight driver

I_ CNF CN
Openstack (containerized) ‘

Sy

[.
”I OpenDaylight CNI

Infra Kubernetes (bare metal)

OpenDaylight Container Orchestration Engine

« Current Status * Future Scenarios

— Hybrid scenario:
« Openstack and Kubernetes side by side

Support for non-OF

— Integration with ODL via Openstack Kuryr southbound
— Supports Multinode environment NetConf
— Supports container in a VM scenario : : :
_ Baremetal scenario Testing with L3VPN for multi-
e Kubernetes 0n|y tenant scenarios
— Tight integration with ODL NetVirt Scale testing & improvement

— Supports Pod 2 Pod networking L2/L3

Use Case V

OpenDaylight in OSS (future)

WAN Transport Orchestrator (WAN-O)

Based on ACTN (Abstraction of Control of Traffic Engineered Network)
IETF Standard for realizing hierarchical SDN architecture
Yang Based (NetConf/RESTCONF) Models

SDN Hierarchical architecture based on ACTN

» Coordination of resources across multiple
independent networks and multiple
technology layers to provide end-to-end —

Between

services customer &

Network Provider

> Layered operational model:

CNC - Customer Network

— Customer: issuing a service request Controller |
MDSC - Multi Domain
from catalog service Coordinator

PNC - Provisioning
Network Controller

— Service Provider: dealing w/ Customer
and providing the service (may or may

not own the network(s) as such) Phlml) mee)

— Network Provider: infrastructure e o
providers owning the physical (wet)
network(s) and building the S

SBI - South Bound Interface

infrastructure

WAN-O as MDSC, Interfaces

MDSC NBI: Business
— CMI: CNC to MDSC interface EZE:;::;V
— YANG based (Netconf/Restconf) Customer &

MNetwork Provider
— End to end Virtual Network concept

— Unified end to end topology

MDSC SBI:
— MPI: MDSC to PNC interface CNC - Customer Network
Controller
— YANG based (Netconf/Restconf) MDSC - Multi Domain Service
— Per domain TE-Tunnels Coordinator
PNC - Provisioning Network
— White or Black Domain topology Controller

- Control -
Plane)
{ Physical)
[Network)

CMI - CNC-MDSC Interface
MPI - MDSC-PNC Interface
SBI - South Bound Interface

Transport Network architecture

Service Orchestration (Operator 1)

WAN-O

-IETFACTNMPI |
-Whitetopology | T

- IETF ACTN MPI |
- t0p0|ogy | /
Operator 1
SDNc A

Operator 2

. SDNc
Operator 3

ASBR

Operator 1

A
\

AP1

AP3

== |nter domain link QWhite topology domain . Black topology domain

END to END service orchestration
Connectivity services

Service Orchestration e2e Orchestrator

NFV-O

WAN Ctrl — : WAN Ctrl — : . : WAN Citrl — :
Microwave PNC 1 1 PNC n]
] 1 e .
) R 1. Service Orchestration
(('E')) M)~ . &5k
ﬁl 7/ 2. WAN Transport SDN
Mini-Link, R6000 3" pp IP/Optical (Underlay)

Service (L2/L3 VPN)

e WAN Transport (Intra domain RSVP / SR, inter domain BGP LU LSP)

END to END service orchestration
VNF services

cpe

0.

Service Orchestration

e2e Orchestrator

WAN Ctrl -
Microwave

ACTN MPI
F ------- F -------
1 1 1 1
| WANCHI- | | WANCul- |
i PNC 1 I i PNC n 1
L | L |

Mini-Link, R6000 h

VIM (Virtual
Infra Mgr)

Service Orchestration

pp IP/Optical

Service (L2/L3 VPN)

(MP)-BGP
peering

2. WAN Transport SDN

Telco DC 6 (Underlay)
° 3. Network Virtualization

——3——3

—

WAN Transport (Intra domain RSVP / SR, inter domain BGP LU LSP)

= - | (Overlay)

DC Overlay transport
(VXLAN, GRE)

OpenDaylight: Getting Involved

Avenues for getting involved

« OpenDaylight Wiki: https://wiki.opendaylight.org

- Maliling Lists:
— Central / Cross Project: https://wiki.opendaylight.org/view/Mailing _Lists
— Complete List including individual projects:

https://lists.opendaylight.org/mailman/listinfo
« Chat with developers via IRC: https://wiki.opendaylight.org/view/IRC
- Meetings:
— Technical Steering Committee: https://wiki.opendaylight.org/view/TSC:Meeting

— Technical Work Stream:
https://wiki.opendaylight.org/view/Tech Work Stream:Main

— Complete List including individual projects:
https://wiki.opendaylight.org/view/Meetings

https://wiki.opendaylight.org/
https://wiki.opendaylight.org/view/Mailing_Lists
https://lists.opendaylight.org/mailman/listinfo
https://wiki.opendaylight.org/view/IRC
https://wiki.opendaylight.org/view/TSC:Meeting
https://wiki.opendaylight.org/view/Tech_Work_Stream:Main
https://wiki.opendaylight.org/view/Meetings

Areas to getting involved In

OpenDaylight Documentation Project

Project of your interest
https://wiki.opendaylight.org/view/Project_list
Code Reviews
Bug Fixing

MD-SAL & Clustering (Distributed Systems)

Experts
Enthusiasts: Improve your skills in these hot & in-demand area

Scale & Performance
Testing

Architecture Improvements
Example: Scalable and Robust Data Replication using etcd.

https://wiki.opendaylight.org/view/Project_list

Acknowledgements

Contributors to slides

Jan Medved

Luis Gomez

Prem Sankar Gopanan
Scott Melton

Srini Seetharaman
YuLing Chen

— Antonio De Gregorio

— Colin Dixon

— Daniele Ceccarelli

— Dayavanti Kamath

— Francois Lemarchand

— Frederick Kautz

» Reference
 https://github.com/BRCDcomm/BVC/wiki/MD-SAL

Q&A

— {,
2 ” 4
= 7/
Y g/

8
v -

D
OPEN SOURCE NETWORKING DAYS

