
Service Proxy, Container Networking & K8s

Hongjun Ni

Intel

Email: hongjun.ni@intel.com

Singapore

Acknowledgement:
Pierre Pfister, Jerome Tollet @Cisco
John DiGiglio, Ray Kinsella @Intel

mailto:hongjun.ni@intel.com

Agenda

➢ What is in Cloud Native Networking?

➢ Problem and Challenge

➢ Proposed Architecture

➢ Existing vs Proposed Solution

➢ Why Choosing FD.io

➢ Service Proxy Implementation

➢ Key Takeaway

What’s in Cloud Native Networking?

Reference: https://www.cncf.io/wp-content/uploads/2017/11/CNCF-Networking-Webinar-final-1-1.pdf

Control Plane:
• Assigns IPs (from a pool given to each workload)
• Distributes routing information (i.e. how to get to this workload)
• Distributes policy (e.g. who can connect to whom)

Data Plane:
For each packet to/from the workload:
• Enforces policy
• Forwards it to the right destination

Problem in Cloud Native Networking

Reference: https://www.cncf.io/wp-content/uploads/2017/11/CNCF-Networking-Webinar-final-1-1.pdf

➢ Cumbersome configuration

➢ Container network cannot cross zones and regions

➢ Forwarding performance is poor

➢ Limited scalability

➢ Unwanted communication between services

➢ Failure recovery difficult

➢ Long convergence time

➢ Monitoring and Troubleshooting is not easy

Kubernetes Architecture

Reference: https://x-team.com/blog/introduction-kubernetes-architecture/

Master Node
• Responsible for the management of

Kubernetes cluster.
• Entry point of all administrative tasks.
• Taking care of orchestrating the worker nodes.

Worker node
• The pods are run here.
• Contains all the necessary services to

manage the networking between the
containers.

• Communicate with the master node.
• Assign resources to the containers scheduled.

Challenge With Current Solution

Reference: https://kubernetes.io/docs/concepts/services-networking/service

Linux kernel solution:
• Watches service and endpoints
• Installs iptables/IPVS rules
• Captures traffic and selects pod
• Redirects traffic to chosen pods

Problems:
• Uses load balancing on iptables/IPVS
• Uses NAT on iptables/IPVS
• Communication via VETH
• Performance degrades when

service/endpoint pairs increase
iptables entries.

• Running on VPP and DPDK

• Policy based on VPP ACL

• Integrate with GoBGP or FRR

• Routing based on VPP FIB

Proposed Architecture

Existing vs Proposed Solution

Existing Solution Proposed Solution

Solution Stack Linux Kernel Stack User Space Project, VPP & DPDK

Policy Enforcement Iptables + ipset VPP ACL

Node Load Balancing Iptables, IPVS VPP kube-proxy

Connection Tracking Iptables, IPVS VPP kube-proxy

DNAT and SNAT Iptables, IPVS VPP kube-proxy

Communication between
Host and Container

Via VETH Via vhost-user or memif

External Load Balancer Via CSP’
load balancer

Via VPP load balancer

Performance Limited Very high

Scaling Limited Very well

Why Choosing FD.io?

Service Proxy Architecture

Services Controller:

1). Reads the services and
endpoints information from
K8s API server

2). Configures Service Proxy
on each cluster node.

Service Proxy Implementation

• Distributes traffic evenly

• Supports two interface types
➢ vhost and virtio-user
➢ memif

• Load Balancing optimized based on
SSE4.2 to improve performance.

• Supports three service types:
➢ Cluster IP
➢ NodePort
➢ External Load Balancer

Integrates External Load Balancer

• Router, Load Balancer and Service Proxy
are supported on VPP.

• On Router, will enable ECMP feature.

• VPP Load Balancer distributes traffic and
encapsulates packets via GRE tunnel.

• On K8s node, it removes GRE tunnel and
goes through Service Proxy to distribute
traffic to chosen pod.

Multithread Support

• RSS enables traffic associated with one connection to a given thread.

• Load balancing and connection track redirects traffic to a chosen pod.

Key Takeaway

➢ A solution offering high performance K8s Service Proxy.

➢ Implementation ready for K8s container networking.

➢ Load Balancing distributes traffic to pods almost evenly.

➢ Connection tracking supports connection persistence.

➢ Consistent hashing ensures resilience to pod changes.

➢ External Load Balancer in support of node-level scaling.

➢ Multithread support for pod-level scaling.

Thank you !

Q & A

Email : hongjun.ni@intel.com

mailto:hongjun.ni@intel.com

Backup Slides

Ligato & Contiv-VPP

Istio & Envoy

Reference: https://istio.io/docs/concepts/what-is-istio/

An Istio service mesh is
logically split into a data
plane and a control plane.

• The data plane is
composed of a set of
intelligent proxies (Envoy)
deployed as sidecars that
mediate and control all
network communication
between microservices.

• The control plane is
responsible for managing
and configuring proxies to
route traffic, as well as
enforcing policies at
runtime.

