OPEN SOURCE NETWORKING DAYS

(/ Sin apo%%;/

/ —
= =

|
uf

===

\ 7 \\/7

Hongjun Ni — Acknowledgement:
Intell Pierre Pfister, Jerome Tollet @Cisco
Email: John DiGiglio, Ray Kinsella @Intel

mailto:hongjun.ni@intel.com

What is in Cloud Native Networking?

Problem and Challenge
Proposed Architecture
Existing vs Proposed Solution
Why Choosing FD.io

Service Proxy Implementation

Key Takeaway

What’s in Cloud Native Networking?

Control Plane:

e Assigns IPs (from a pool given to each workload)

» Distributes routing information (i.e. how to get to this workload)
e Distributes policy (e.g. who can connect to whom)

Control Plane

Data Plane:

For each packet to/from the workload:
e Enforces policy

* Forwards it to the right destination

Data Plane

Reference: https://www.cncf.io/wp-content/uploads/2017/11/CNCF-Networking-Webinar-final-1-1.pdf

Problem in Cloud Native Networking

Cumbersome configuration

Container network cannot cross zones and regions
Forwarding performance is poor

Limited scalability

Unwanted communication between services
Failure recovery difficult

Long convergence time

YV V.V V YV V V V

Monitoring and Troubleshooting is not easy

Reference: https://www.cncf.io/wp-content/uploads/2017/11/CNCF-Networking-Webinar-final-1-1.pdf

Kubernetes Architecture

Master node

Worker node

e

> kubelet kube-proxy
I

AP server

Pod ¢ Pod | ¥ docker

controller-manager
(replication, namespace
Serviceaccounts, ...}

‘ scheduler W

-

o |

Worker node

Kubelat kube -proxy

Pod ,I,

docker

2 &

Reference: https://x-team.com/blog/introduction-kubernetes-architecture/

Master Node

* Responsible for the management of
Kubernetes cluster.

* Entry point of all administrative tasks.

* Taking care of orchestrating the worker nodes.

Worker node

* The pods are run here.

* Contains all the necessary services to
manage the networking between the
containers.

* Communicate with the master node.

* Assign resources to the containers scheduled.

Challenge With Current Solution

apiserver

1

v

Client

kube-proxy

ServicelP
(1ptables)

Node
Backend Pod 1 | |Backend Pod 2 | [Backend Pod 3
labels: app=MyApp labels: app=MyApp labels: app=MyApp
port: 9376 port: 9376 port: 9376

Reference: https://kubernetes.io/docs/concepts/services-networking/service

Linux kernel solution:

* Watches service and endpoints
* Installs iptables/IPVS rules

* Captures traffic and selects pod
* Redirects traffic to chosen pods

Problems:

Uses load balancing on iptables/IPVS
Uses NAT on iptables/IPVS
Communication via VETH
Performance degrades when
service/endpoint pairs increase
iptables entries.

Proposed Architecture

Kubernetes API server

Watchers I Watch API server
Endpoints namespace Pod Node :j?g’;rk Service
Controllers l Notifications
Network services controller Network policy controller Network routes controller
Data Plane
Service Proxy ‘ ‘ ACL GoBGP + Routing

Running on VPP and DPDK
Policy based on VPP ACL
Integrate with GoBGP or FRR

Routing based on VPP FIB

Existing vs Proposed Solution Q o

!’ \; ¥ 3
_ Existing Solution Proposed Solution

Solution Stack Linux Kernel Stack User Space Project, VPP & DPDK
Policy Enforcement Iptables + ipset VPP ACL
Node Load Balancing Iptables, IPVS VPP kube-proxy
Connection Tracking Iptables, IPVS VPP kube-proxy

DNAT and SNAT Iptables, IPVS VPP kube-proxy

Communication between Via VETH Via vhost-user or memif
Host and Container
External Load Balancer Via CSP’ Via VPP load balancer
load balancer

Why Choosing FD.io?

Orchestration & ,[(e OPEN w@openstaCQC))@ Ligato> C:@DNA@

Controller ‘
: iﬁio Data-plane Management N/ Analytics)
Data Plane Services : : Vo L '.
- "‘ C) C) (& contivvep) / j
Dataplane 2=
Management Agent B R
Packet Processing 7" Testing

/Support

-~
.
3
.
.
[
]
]
[
[

NSH_SFC PMA Tools N ‘-:

\
\

Network IO 5

ﬂ DPDK
Operating Systems ‘ OSV Packaging
" _—:.é.ié

(deb_dpdk © ‘j>(rpm_dpdk %"“Qﬂ) SUSE

debian Younty

Packet Processing

Service Proxy Architecture

Services Controller:

1). Reads the services and
endpoints information from
K8s APl server

2). Configures Service Proxy
on each cluster node.

Service Proxy Implementation

K8s-node
Backend Pod 1 Backend Pod 2

o

" DNAT)
__///’

(nnection\\)
VPP/DPDK - Tracking -

“balancing_~

(

Distributes traffic evenly

Supports two interface types
> vhost and virtio-user
> memif

Load Balancing optimized based on
SSE4.2 to improve performance.

Supports three service types:
» Cluster IP
» NodePort
» External Load Balancer

Integrates External Load Balancer

VPP Service Proxy

K8s-node-1

GRE tunnel @)

K8s-node-2

VPP Router

R

K8s-node-3

Router, Load Balancer and Service Proxy
are supported on VPP.

On Router, will enable ECMP feature.

VPP Load Balancer distributes traffic and
encapsulates packets via GRE tunnel.

On K8s node, it removes GRE tunnel and
goes through Service Proxy to distribute
traffic to chosen pod.

Multithread Support

/i R

Worker0 - N

[— — — - — — -
Y — S— — — ——- — —™

ﬁ — e —
L _— — - S — —

. —h e —

RSS enables traffic associated with one connection to a given thread.

* Load balancing and connection track redirects traffic to a chosen pod.

Key Takeaway

A solution offering high performance K8s Service Proxy.
Implementation ready for K8s container networking.
Load Balancing distributes traffic to pods almost evenly.
Connection tracking supports connection persistence.
Consistent hashing ensures resilience to pod changes.
External Load Balancer in support of node-level scaling.
Multithread support for pod-level scaling.

Thank you |

Q&A

Email : hongjun.ni@intel.com

mailto:hongjun.ni@intel.com

Backup Slides

Ligato & Contiv-VPP

kubernetes @ Contiv

& LiGATO

Production-Grade Performance-Centric Cloud-native Network Function Containerized Fast
Container Orchestration Container Networking Orchestration Data Input/ Qutput
I ""'l--..,__.- _...-—"' l
-."'"'-- -""'"-—
; | | ~h4- | l
B o e # Enabling Production-Grade Native Cloud Network Services at Scale ¢===== .

Service Policy Service Topology Lifecycle

Production-Grade Container Orchestration

Kubermetes API Proxies

& sFc
Controllr

4
|

+
Network Function and Network Topology Orchestration E
1
i

Containerized Nétwork Data Plane
v

Contiv Netmaster CR

B e =

om SoFoK

ﬁ FD.io VPP
- "= Container Switch | - ‘e Network Function

Istio & Envoy

Control Plane API . . .
—— An Istio service mesh is

_Control flow during ‘ ‘ ‘ T " logically split into a data

request processing Pilot Mixer Istio-Auth plane and a control plane.
S S .
Config data to ! A S \ TLS certs e The data plane is
Envoys ¥ ' . toEnvoy composed of a set of
| Policy checks, ™ intelligent proxies (Envoy)
SR telemetry « S deployed as sidecars that
O\ e mediate and control all
(Pod P | network communication
HTTP/1,HTTP/2, | Enﬁoy . | HTTP/1.1,HTTP/2, N Enﬁoy between microservices.
gRPC, TCP with or gRPC, TCP with or
without TLS without TLS] .
* The control plane is
M responsible for managing
SYCA \ | sveB and configuring proxies to
" - route traffic, as well as
Service A Service B enforcing policies at

runtime.

Reference: https://istio.io/docs/concepts/what-is-istio/

———
= =
= e
=5 g

,,,,,,,,,,

CE'NETWORKING DAYS

\

U

\ il
;,M// M %//y///)

\

OPEN

