
Microservices & K8S
Iyappa (Ayyaps) Swaminathan, 

Lumina Networks Inc.

Singapore



Agenda

• Microservices introduction

• Containers

• Container Management

• Kubernetes architecture

• Adoption challenges for microservices

• Container Networking

• Service Mesh

• Key Takeaways

• Experiences in integrating ODL with microservices

• Experiences with ODL CNI plugins and COE

• Q&A



Microservices

Reference / Image credit : https://martinfowler.com/articles/microservices.html



Containers

• Microservices is an architectural guidance for building apps

• Apps can be built as 

– Services on a single OS on a bare-metal [Issues: Services can have conflicting 

library versions. Dependency management is an issue]

– Each service in a VM [Issues: Compute utilization unoptimized]

– Each service in a container 

• Lightweight and isolated execution environment

• Consistent environment across development, test, staging and production

• Granular control on workload placement

• Better options for horizontal scaling

• Improved resource utilization

• Microservices does not dictate use of containers (Eg. Netflix)

– But containers are a great way to decompose large applications



The need for container management

• Services will always have failures. Create a resilient system to deal with 

issues, rather than targeting to develop perfect microservice components

• “Pet” vs “Cattle” approach

• Typical management functions

– Configure / Deploy

– Upgrade

– Scale

– Discover

– Load Balance

– Network

– Decide Placement

– Federate

– Authenticate

– Predict resource 

needs

– Manage life-cycle

– Manage quota

– Monitor

– Query

– Health-check



Kubernetes Architecture

Image credit : https://en.wikipedia.org/wiki/Kubernetes

kubectl



Challenges with microservices adoption

• Existing applications and VNFs almost need a rewrite/reorganize to 

migrate to the microservices architecture model. Needs huge investments

• Increased East-West network traffic between components because of the 

distributed model

• Difficulty in enforcing security/policy, because of the large attack surface



Container Networking - Introduction

• Single Host 

– Docker models (Bridge, Host, Container)

– Linux MACVLAN / IPVLAN

– Direct attachment to SRIOV

• Multi Host

– L2 - Flannel

– L3 - Calico

• External world interaction

• IP address management

• Port allocation

Image credit : https://thenewstack.io/hackers-guide-kubernetes-networking/



Application Networking requirements

• Application networking needs (L7)

– Discover services

– Handle timeouts / retries

– Load balance / rate-limit

– Implement circuit-breakers

– Distributed tracing

• Service Mesh

– Separate network functions from business logic

– Push network-functions into infra

– Facilitates fault & latency injection 

Image credit : Oreily/Nginx



Istio Architecture

Image credit : https://istio.io/docs/concepts/what-is-istio/arch.svg



Key Takeaways

• Containers are a great way to decompose large applications

• Container orchestration/management needed to operate container based 

applications at scale

• Service Mesh is an essential component of microservices development

– Policy/Security

– Observability

– Uniformity



ODL integration with microservices bus

Developer Interfaces

RESTCONF JAVA ZeroMQ

Southbound Plugins

OpenFlow NETCONF OVSDB PCEP PCMM BGP

Virtual Physical

3rd-Party

Controller Core

Value Added Applications

Flow Manager Topology Manager Path Computation

Containerized South Bound Interfaces

CLI TL1 REST Custom

Legacy DevicesEMS

JSON-RPC ZMQ Messaging Bus

3rd Party containerized Applications

Analytics Monitoring & Telemetry Custom



Container Networking Challenges

• Currently built for homogenous, high 

throughput, enterprise-centric 

application clusters

• Needs more tweaking for L2/L3 use-

cases of Telcos

• Enabling container orchestration 

frameworks to access and leverage the 

advanced networking capabilities of 

commercial switch vendors is desirable 

• Operators don't want to give up key 

capabilities in one area of the system 

(networking) for gains in another 
(compute)

Reference / Image credit : https://github.com/ligato/networkservicemesh



Extensions to Opendaylight COE for physical underlay

Kubernetes

COE watcher

KubeletGrpc

COE CNI

OVS

Grpc

Netvirt

JSON RPC

Kubeproxy

Grpc

IPTables

Node

ODL

Fabric MNG

Ansible SALT SRIOV
HW 

offload

Netconf

COE DS

VPP/Switch/TOR



Q&A




