
When Production is Someone Else’s Black Box:
Safely developing OSS for the enterprise
Isobel Redelmeier @ Open Source Leadership Summit

‣ Hello there!

‣ What’s the situation today?

‣ Towards solutions

‣ Q&A

Open Source Engineer @

Previously @

@1z03b1

!

Open Source Engineer @

Previously @

@1z03b1

!

My accuracy SLA today is < 100%

What can open source learn from SaaS*?
*also PaaS, etc.

What can open source learn from SaaS*?What can open source learn from SaaS*?
should

*also PaaS, etc.

SaaS OSS

Move fast

Don’t break things

(too much)

SaaS OSS

Move fast

Don’t break things

(too much)

SaaS OSS

Move fast

Don’t break things

(too much)

SaaS OSS

Move fast

Don’t break things

(too much)

SaaS OSS

Move fast

Don’t break things

(too much)

Why even care about moving fast?

Why even care about moving fast?

• Faster feedback loops

Why even care about moving fast?

• Faster feedback loops

• De-risk risky bets

Why even care about moving fast?

• Faster feedback loops

• De-risk risky bets

• Deliver value sooner

Why even care about moving fast?

• Faster feedback loops

• De-risk risky bets

• Deliver value sooner

• Time is $$$

Why even care about moving fast?

• Faster feedback loops

• De-risk risky bets

• Deliver value sooner

• Time is $$$

• Sometimes, we need to! "

These are new challenges for open source

These are new challenges for open source

…or are they?

…or are they?

How often do you update your production…

#

How often do you update your production…

#
‣ Database?

How often do you update your production…

#
‣ Database?

‣ Operating system?

How often do you update your production…

#
‣ Database?

‣ Operating system?

‣ Other dependencies?

What happens when you do?#

If SaaS gets continuous deployment…

If SaaS gets continuous deployment…

can OSS get continuous releasing?

Continuous releasing:

‣ Would mean that ~every commit is released… or at
least releasable

‣ Must be safe for end-users

‣ Must be easy for operators

‣ SLA: Service level agreement

‣ SLA: Service level agreement

‣ SLO: Service level objective

‣ SLA: Service level agreement

‣ SLO: Service level objective

‣ SLI: Service level indicator

These are in the control of operators

These are in the control of operators

but we can help them

Eff
or

t

Number of observed scenarios

0 1 2 n

Operators need to be empowered to own their own
observability

Eff
or

t

Number of observed scenarios

0 1 2 n

Operators need to be empowered to own their own
observability

‣ Start by testing two scenarios:

1. Something cheap

2. Something that reflects a real environment

‣ Make performance tests easy to repeat

‣ Bake in observability instrumentation

 $ We need to able to address tech debt $

‣ Versions

‣ API changes and deprecations

‣ Migrations

Versions should be…

‣ Predictable

‣ Meaningful

‣ Simple

API deprecations start with API minimizations

Migrate schemas as necessary

Migrate schemas as necessary

within your error budget

Migrate schemas as necessary

within your error budget

or in multiple steps

Could we have…

Could we have…

• Automated updates?

Could we have…

• Automated updates?

• Phased updates?

Could we have…

• Automated updates?

• Phased updates?

• Shared telemetry?

Thank you!

@1z0b31 | isobel@lightstep.com

