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Why even care about moving fast?


• Faster feedback loops

• De-risk risky bets

• Deliver value sooner

• Time is $$$

• Sometimes, we need to! "
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‣ Operating system?


‣ Other dependencies?



What happens when you do?#
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can OSS get continuous releasing?



Continuous releasing:


‣ Would mean that ~every commit is released… or at 
least releasable


‣ Must be safe for end-users


‣ Must be easy for operators
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‣ SLO: Service level objective

‣ SLI: Service level indicator
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These are in the control of operators

but we can help them
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‣ Start by testing two scenarios:


1. Something cheap


2. Something that reflects a real environment


‣ Make performance tests easy to repeat


‣ Bake in observability instrumentation



 $ We need to able to address tech debt $



‣ Versions


‣ API changes and deprecations


‣ Migrations



Versions should be…


‣ Predictable


‣ Meaningful


‣ Simple



API deprecations start with API minimizations
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Migrate schemas as necessary

within your error budget

or in multiple steps
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• Automated updates?

• Phased updates?

• Shared telemetry?



Thank you!
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