

Trusted Al Or how to build trustworthy machines

Patricia Ferreiro, IBM @pferreiro92

Who am I?

Patricia Ferreiro

- Big Data & Analytics Architect @ IBM
- BSc Electrical Engineering
- Currently MSc Data Science
- Based in Barcelona, Spain
- Aspiring polyglot

Do we trust Al?

US & WORLD 🔪 TECH 🔪 ARTIFICIAL INTELLIGENCE 🔪

Al that detects cardiac arrests during emergency calls will be tested across Europe this summer

The software listens in to calls and helps emergency dispatchers make judgements

By James Vincent | Apr 25, 2018, 10:06am EDT

161,650 emergency calls related to **cardiac arrests**.

Source: European Emergency Number Association (EENA) and Corti

161,650 emergency calls related to **cardiac arrests**.

Al was more precise than human operators: **95,3%** vs **73,9%** detections...

161,650 emergency calls related to **cardiac arrests**.

Al was more precise than human operators: **95,3%** vs **73,9%** detections...

...and faster: 48 vs 79 seconds in average

Source: European Emergency Number Association (EENA) and Corti

Do we trust AI?

In traditional software development, trust is built through standarized processes such as **testing suites**, audit procedures or documentation.

However, AI systems build knowledge up over time, are **non-deterministic** and often **difficult to understand**.

Al adoption by high-stakes decision making applications is increasing exponentially. Nowadays, Al helps answer many questions:

- Which **resumes** are considered?
- What is your medical diagnosis?
- Who gets their **mortgage loan** approved?
- Will your car **stop** to avoid danger?

- ...

The four pillars of Trusted AI

Fairness

Explainability

Is it ethical?

Is it easy to understand?

Robustness

Is it reliable?

Lineage

Is it accountable?

Motivation

Source: COMPASS Software Results', Julia Angwin et al. '16

Motivation II

• The **quality** of an AI system is as good as the data it feeds on

• Al should not **learn and propagate our biases**

• To create fair applications we must **detect and mitigate bias** throughout the lifecycle of AI systems

Motivation III

Biased AI systems can have a negative impact on critical areas:

- Product usability
- Laws and regulations
- Ethical issues

Representative harm

Distributive harm

¿Can you quantify the *impact* your AI models have in your *business* as well as in your *client opportunities*?

How is bias measured?

- Multiple definitions of **bias** exist
 - Statistical measures
 - Similarity-based measures
 - Causal reasoning
- Can be **contradictory**!
- Domain knowledge may be required
- Accuracy vs utility trade-off

Where does bias come from?

- Data acquisition/sampling
- Human labeling
- Propagated historical bias
- Algorithm design

2018 Timeline

Announces internal tool "Fairness Flow" now jointly developed with TU München

Announces development of internal tools to evaluate bias

Publishes "What-If tool", a visual exploration tool including bias mitigation algorithms

Publishes "AIF360" framework, with 30+ metrics, 9+ mitigation algorithms and a certain degree of explainability

Open Source tools

• FairSearch: <u>https://github.com/fair-search</u>

Framework for specific algorithm testing on multiple datasets and fairness measures.

• FairML: <u>https://github.com/adebayoj/fairml</u>

Features four input ranking algorithms to quantify a model's relative predictive dependence on model's inputs.

FairTest: <u>https://github.com/columbia/fairtest</u>

Learns a decision tree that splits a user population into smaller subgroups in which the association between protected features and algorithm outputs is maximized.

Open Source tools II

- UChigago Aequitas: <u>https://github.com/dssg/aequitas</u> Produces a report on multiple statistical bias metrics.
- **PyMetrics Audit-AI**: <u>https://github.com/pymetrics/audit-ai</u>

Built on top of pandas and sklearn, implements fairness-aware ML algorithms with metrics for both classification and regression tasks.

Open Source tools III

• IBM AlFairness360: <u>https://github.com/IBM/AIF360</u>

Framework for bias statistical assessment and mitigation throught the model lifecycle.

Lessons learned

- Bias appears in the data and **may inaccurately model populations**
- Mitigating bias may decrease model accuracy
- Bias assessment and mitigation is an iterative and complex process
 - Mostly not regulated
 - Fuzzy domain-specific definitions
- Several open source initiatives ⁽²⁾

e) diagnosis probabilities and referral suggestion

Motivation II

- Understanding how AI systems arrive at an outcome is key to trust
- Humans are legally and morally liable
- To improve transparency, local and global interpretability of AI models is required

Motivation III

- The European Union's General Data Protection Regulation (GDPR) grants consumers the right to know when automated decisions are being made about them and the right to have these decisions explained.
- Enterprises that adopt XAI now will be **prepared for future compliance** mandates.

Source: <u>https://gdpr-info.eu/art-22-gdpr/</u>

Accuracy vs Explainability trade-off

Source: DARPA (US Department of Defense) XAI Project

Technical approaches

- Explanation by Design
- Black Box eXplanation
 - 1. Train a complex model on some dataset
 - 2. Train an interpretable model on the original dataset plus the predictions

Black Box eXplanation

Local Interpretable Model-agnostic Explanations - LIME

Source: "Why Should I Trust You?": Explaining the Predictions of Any Classifier, Marco Tulio et al. 2016

Black Box eXplanation II

SHapley Additive exPlanations - SHAP

Source: A Unified Approach to Interpreting Model Predictions, Scott M. Lundberg et al. 2017

Black Box eXplanation III

Neural nets – Feature visualization

Source: Feature visualization, Google Brain '17

Black Box eXplanation IV

Neural nets – Feature visualization

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

Source: Feature visualization, Google Brain '17

Black Box eXplanation V

Source: Learning Deep Features for Discriminative Localization, MIT '15

Open Source tools

LIME: <u>https://github.com/marcotcr/lime</u>

Supports local explainability for images, text classifiers and classifiers that act on tables. Visualizations are generated in HTML and matplotlib.

Open Source tools II

• SHAP: <u>https://github.com/slundberg/shap</u>

Provides explainers for any ML model by generalizing multiple Additive Feature Attribution Methods such as LIME, connecting game theory with a local explanation. Generates JS visualizations. **SHAP values represent a feature's responsibility for a change in the output.**

Open Source tools II

• SHAP: <u>https://github.com/slundberg/shap</u>

meerkat

red-backed_sandpiper

mongoose

–0.006 –0.004 –0.002 0.000 0.002 0.004 0.006 SHAP value

Explainability

Open Source tools III

• Google What-If Tool:

https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins/interactive_inference

TF plugin for visually investigating model performance and fairness over subsets of a dataset and counterfactual exploration.

Explainability

Lessons learned

- Transparency is key for "Augmented AI" to be widely adopted
- Explainability must be taken into account during algorithm design
- Powerful, extensible open source frameworks for generating explainable models already exist

Motivation

Source: Deceiving Autonomous Cars with Toxic Signs, Princeton University

Motivation II

- Al systems aim to act autonomously in critical scenarios where a single mistake may have a high cost
- State of the art AI systems have been proven weak against relatively simple **adversarial inputs**

Defining robustness against...

- Human errors: type check, variable ranges
- Malicious attacks: adversarial inputs
- Incorrect models: regularization, risk-sensitive objectives
- Unmodeled phenomena: expand model
 - It is impossible to model everything
 - It is not desirable to model everything

Al systems must be able to **act autonomously** without having **a complete model of the world**

Key insights

- **Minimal perturbations**, often imperceptible to humans, that completely fool AI systems into unwanted behaviour (2013, Szegedy et al.)
- A practical definition of **the robustness of a model** is the average size of the minimum adversarial perturbation.
- Black vs White box attacks: on training or serving step.
- **One-time vs Iterative** attacks: one-time are highly transferrable and thus more effective in black box attacks.

Types of adversarial attacks

- **Gradient-based**: finds directions to which the model predictions for a given class are most sensitive to.
- **Score-based**: use class probabilites or logits to approximate gradients.
- **Decision-based**: rely only on the class decision of the model.

Adversarial attacks I

Source: Accessorize to a Crime, Mahmood Sharif et al., 2016

Adversarial attacks II

Source: Crafting Adversarial Examples For Speech Paralinguistics Applications, Yuan Gong et al., 2017

Adversarial defenses

Adversarial images - JPEG Compression

Source: Defending AI with JPEG Compression, Nilaksh Das, '17

Open Source tools

Borealis AI – AdverTorch: <u>https://github.com/BorealisAI/advertorch</u>

Attack and defense API for PyTorch.

Cleverhans: <u>https://github.com/tensorflow/cleverhans</u>

Benchmark AI systems vulnerability to adversarial examples. Roadmap: support for JAX, PyTorch, and TF2.

Foolbox: <u>https://github.com/bethgelab/foolbox</u>

Extensible framework for adversarial robustness benchmarking, both implementing gradientbased attacks and black-box attacks. Supports multiple frameworks.

Open Source tools II

• **IBM ART:** <u>https://github.com/IBM/adversarial-robustness-toolbox</u>

Python library that implements adversarial attacks, defenses and robustness metrics for multiple ML and DL algorithms with multiple framework support.

Lessons learned

- Al systems are **not robust by default**
- **Testing and debugging practices** have not been standardized for AI
- Adversarial evaluation provides robustness metrics related to model quality and security

Lineage

Lineage

Motivation

Al democratization Global r

Global regulations

In order to enable an AI marketplace each digital asset must be trackable, verifiable and held accountable

The dataset nutrition label

Source: The Dataset nutrition label - MIT, Harvard '18

Lineage

The dataset nutrition label

- Common metadata
- Provenance
- Variable description and statistics
- Pair plots
- Probabilistic models
- Ground truth correlations

IBM proposes a **Supplier's Declaration of Conformity** (SDoC) that helps provide information about the **four key pillars of trusted AI**.

- Dataset "nutritional label"
- Bias assessment and mitigation
- Algorithm explainability and interpretability
- Robustness policy

Lineage

Source: An End-To-End Machine Learning Pipeline That Ensures Fairness Policies, IBM Research '17

Al is experiencing a renaissance and, according to Gartner, it's vital that we

"build AI right, use AI right, keep AI right".

The values adopted to build today's AI systems will be **reflected in the decisions those systems make for a decade or more**.

Thank you! Q&A

@pferreiro92

OPEN SOURCE SUMMIT