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Who am I?

Patricia Ferreiro

Big Data & Analytics Architect @ IBM
BSc Electrical Engineering

Currently MSc Data Science

Based in Barcelona, Spain

Aspiring polyglot
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Do we trust Al?
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US & WORLD \ TECH \ ARTIFICIAL INTELLIGENCE \
Al that detects cardiac arrests during emergency

calls will be tested across Europe this summer

The software listens in to calls and helps emergency dispatchers make
judgements

By James Vincent | Apr 25, 2018, 10:06am EDT




161,650 emergency calls related to cardiac

arrests.

Source: European Emergency Number Association (EENA) and Corti




161,650 emergency calls related to cardiac
arrests.

Al was more precise than human operators: 95,3%
vs 73,9% detections...

Source: European Emergency Number Association (EENA) and Corti




161,650 emergency calls related to cardiac
arrests.

Al was more precise than human operators: 95,3%
vs 73,9% detections...

...and faster: 48 vs 79 seconds in average

Source: European Emergency Number Association (EENA) and Corti




Introduction

Do we trust Al?

In traditional software development, trust is built through standarized
processes such as testing suites, audit procedures or documentation.

However, Al systems build knowledge up over time, are non-deterministic and
often difficult to understand.
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Introduction

Al adoption by high-stakes decision making applications is increasing
exponentially. Nowadays, Al helps answer many questions:

- Which resumes are considered?

- What is your medical diagnosis?

- Who gets their mortgage loan approved?
- Will your car stop to avoid danger?
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The four pillars of Trusted Al
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Fairness

Motivation

VERNON PRATER

Prior Offenses

2 armed robberies, 1
attempted armed
robbery

Subsequent Offenses
1grand theft
e 1 1o

PVERNON'PRATER &l ~ BRISHA BORDEN
LOW RISK 3 HIGH RISK 8  LowRisk

BRISHA BORDEN
Prior Offenses
4 juvenile

misdemeanors

Subsequent Offenses
None

HIGH RISK

Source: COMPASS Software Results’, Julia Angwin et al. ’16
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Motivation Il

* The quality of an Al system is as good as the data it feeds on

* Al should not learn and propagate our biases

* To create fair applications we must detect and mitigate bias throughout the

lifecycle of Al systems
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Motivation llI

Biased Al systems can have a negative impact on critical areas:
*  Product usability
* Laws and regulations

*  Ethical issues
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Representative harm Distributive harm

¢ Can you quantify the impact your Al models have in your
business as well as in your client opportunities?
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How is bias measured?

*  Multiple definitions of bias exist

— Statistical measures
—  Similarity-based measures

— Causal reasoning
* Can be contradictory!
*  Domain knowledge may be required

* Accuracy vs utility trade-off

THE

y @pferreiro92 L JLinux

FOUNDATION



Where does bias come from?

* Data acquisition/sampling

Human labeling

Propagated historical bias

Algorithm design
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2018 Timeline

ﬁ Announces internal tool “Fairness Flow” now jointly developed with TU Miinchen

Announces development of internal tools to evaluate bias

Publishes “What-If tool”, a visual exploration tool including bias mitigation algorithms

AQ

Publishes “AIF360” framework, with 30+ metrics, 9+ mitigation algorithms and a
certain degree of explainability
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Open Source tools

* FairSearch: https://github.com/fair-search
Framework for specific algorithm testing on multiple datasets and fairness measures.

* FairML: https://github.com/adebayoj/fairml

Features four input ranking algorithms to quantify a model’s relative predictive
dependence on model’s inputs.

* FairTest: https://github.com/columbia/fairtest

Learns a decision tree that splits a user population into smaller subgroups in which the
association between protected features and algorithm outputs is maximized.
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https://github.com/fair-search
https://github.com/adebayoj/fairml
https://github.com/columbia/fairtest

Open Source tools i

* UChigago Aequitas: https://github.com/dssg/aequitas
Produces a report on multiple statistical bias metrics.

*  PyMetrics Audit-Al: https://github.com/pymetrics/audit-ai

Built on top of pandas and sklearn, implements fairness-aware ML algorithms with
metrics for both classification and regression tasks.
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https://github.com/dssg/aequitas
https://github.com/pymetrics/audit-ai

Open Source tools llI

* IBM AlFairness360: https://github.com/IBM/AIF360
Framework for bias statistical assessment and mitigation throught the model lifecycle.
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https://github.com/IBM/AIF360

Lessons learned

* Bias appears in the data and may inaccurately model populations
* Mitigating bias may decrease model accuracy

* Bias assessment and mitigation is an iterative and complex process

Mostly not regulated

Fuzzy domain-specific definitions

- Several open source initiatives ©
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Explainability

14,884 training tissue maps with confirmed
diagnosis and referral decision
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y @ pfe rreiro92 Source: Clinically applicable deep learning for diagnosis and referral in retinal disease, De Fauw et al. 2018
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Explainability

Motivation Il

* Understanding how Al systems arrive at an outcome is key to trust
* Humans are legally and morally liable

* To improve transparency, local and global interpretability of Al models is

required

THE

Y @pferreiro92 L JLINUX
GSGEGEEGSSSSSSSSSSSS.



Explainability

Motivation llI

GDPR
Compliance

The European Union’s General Data Protection Regulation (GDPR) grants
consumers the right to know when automated decisions are being made
about them and the right to have these decisions explained.

Enterprises that adopt XAl now will be prepared for future compliance
mandates.

Source: https://gdpr-info.eu/art-22-gdpr/
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https://gdpr-info.eu/art-22-gdpr/

Explainability

Accuracy vs Explainability trade-off

Learning Techniques (today) Explainability
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Source: DARPA (US Department of Defense) XAl Project
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Explainability

Technical approaches

* Explanation by Design

* Black Box eXplanation
1. Train a complex model on some dataset
2. Train an interpretable model on the original dataset plus the predictions
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Explainability

Black Box eXplanation

Local Interpretable Model-agnostic Explanations - LIME

— /;; Flu | Explainer
weight (LIME)
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M no fatigue
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no fatigue

Model Data and Prediction

Explanation Human makes decision

Source: "Why Should | Trust You?": Explaining the Predictions of Any Classifier, Marco Tulio et al. 2016
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Explainability

Black Box eXplanation Il
SHapley Additive exPlanations - SHAP

prediction

explanation

Source: A Unified Approach to Interpreting Model Predictions, Scott M. Lundberg et al. 2017
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Explainability

Black Box eXplanation Il
Neural nets — Feature visualization

Step 2048

Source: Feature visualization, Google Brain ‘17

Step 0 Step 4
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Source: Feature visualization, Google Brain ‘17
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Explainability

Black Box eXplanation V

O
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Source: Learning Deep Features for Discriminative Localization, MIT ‘15
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Explainability

Open Source tools

*  LIME: https://github.com/marcotcr/lime

Supports local explainability for images, text classifiers and classifiers that act on tables.
Visualizations are generated in HTML and matplotlib.

Prediction probabilities edible poisonous Feature Value
edible ; odor=foul True
poisonous [T 1.00 ill-size=b I —— True
stalk-surface-above-ring=silky  True

spore-print-color=chocolate ~ True
stalk-surface-below-ring=silky True
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https://github.com/marcotcr/lime

Explainability

Open Source tools i

*  SHAP: https://github.com/slundberg/shap

Provides explainers for any ML model by generalizing multiple Additive Feature Attribution
Methods such as LIME, connecting game theory with a local explanation. Generates JS
visualizations. SHAP values represent a feature's responsibility for a change in the output.
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https://github.com/slundberg/shap

Explainability

Open Source tools i

*  SHAP: https://github.com/slundberg/shap

O .o
8 1 DK AN VR
6.
P
)
el
g 4 o
gE ‘."- .
a 2 =
z ;o
n A
0 . o
S e, L o
] ‘e <
4 5 6 7 8
RM

y @pferreiro92

22.09

19.22

16.35

13.48 O

10.61

7.74

4.87

2.00

—0.006 —0.004

—0.002

dowitcher

F

"%

Sy

meerkat

L

0.000
SHAP value

0.002

red-backed_sandpiper

mongoose

0.004 0.006
THE
L LINUX
FOUNDATION


https://github.com/slundberg/shap

Explainability

Open Source tools llI

* Google What-If Tool:

https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins/interactive inference

TF plugin for visually investigating model performance and fairness over subsets of a dataset
and counterfactual exploration.
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https://github.com/tensorflow/tensorboard/tree/master/tensorboard/plugins/interactive_inference

Explainability

Lessons learned

* Transparency is key for “Augmented Al” to be widely adopted
* Explainability must be taken into account during algorithm design

*  Powerful, extensible open source frameworks for generating explainable
models already exist
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Robustness

Motivation

Logo Attacks

Original

Adversarial ||

Classified as:  Stop No overtaking

Y @pferreiro92

Custom Sign Attacks Adversarial Traffic Signs
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Source: Deceiving Autonomous Cars with Toxic Signs, Princeton University
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Robustness

Motivation Il

* Al systems aim to act autonomously in critical scenarios where a single
mistake may have a high cost

* State of the art Al systems have been proven weak against relatively
simple adversarial inputs
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Robustness

Defining robustness against...

*  Human errors: type check, variable ranges
* Malicious attacks: adversarial inputs
* Incorrect models: regularization, risk-sensitive objectives
* Unmodeled phenomena: expand model
* Itisimpossible to model everything
* Itis not desirable to model everything

Al systems must be able to act autonomously
without having a complete model of the world
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Robustness

Key insights

* Minimal perturbations, often imperceptible to humans, that completely fool Al
systems into unwanted behaviour (2013, Szegedy et al.)

* A practical definition of the robustness of a model is the average size of the
minimum adversarial perturbation.

* Black vs White box attacks: on training or serving step.
* One-time vs lterative attacks: one-time are highly transferrable and thus more
effective in black box attacks.
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Robustness

Types of adversarial attacks

* @Gradient-based: finds directions to which the model predictions for a given class
are most sensitive to.

* Score-based: use class probabilites or logits to approximate gradients.

* Decision-based: rely only on the class decision of the model.
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Robustness

Adversarial attacks I

Source: Accessorize to a Crime, Mahmood Sharif et al., 2016
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Robustness

Adversarial attacks Il

‘How are you?’ % 0.01 ‘Open the door’
Source: Crafting Adversarial Examples For Speech Paralinguistics Applications, Yuan Gong et al., 2017
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Robustness

Adversarial defenses
Adversarial images - JPEG Compression

—r

Adversarial
Perturbation

q
JPEG

Compression

classified as misclassified as reclassified as

Stop Sign Max Speed 100 Stop Sign

Source: Defending Al with JPEG Compression, Nilaksh Das, ‘17
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Robustness

Open Source tools

adver

*  Borealis Al — AdverTorch: https://github.com/BorealisAl/advertorch toreh

Attack and defense API for PyTorch.

* Cleverhans: https://github.com/tensorflow/cleverhans ccverhans

Benchmark Al systems vulnerability to adversarial examples. Roadmap: support for JAX,
PyTorch, and TF2.

*  Foolbox: https://github.com/bethgelab/foolbox

Extensible framework for adversarial robustness benchmarking, both implementing gradient-
based attacks and black-box attacks. Supports multiple frameworks.
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Robustness

Open Source tools i

* IBM ART: https://github.com/IBM/adversarial-robustness-toolbox

Python library that implements adversarial attacks, defenses and robustness metrics for
multiple ML and DL algorithms with multiple framework support.

| @ python |

ATTACKING DEFENDING
ALGORITHMS ALGORITHMS

‘ Keras PYTHRCH @xnet
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https://github.com/IBM/adversarial-robustness-toolbox

Robustness

Lessons learned

* Al systems are not robust by default
* Testing and debugging practices have not been standardized for Al

* Adversarial evaluation provides robustness metrics related to model
quality and security
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Lineage

Motivation
Al democratization Global regulations

In order to enable an Al marketplace each digital asset must be
trackable, verifiable and held accountable
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Lineage

The dataset nutrition label
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Interrogating data quality

DATASET
Dataset Preprocessing
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Data Plpelme

& generating “nutrition label”

MODEL
Development Deployment

Source: The Dataset nutrition label - MIT, Harvard ‘18
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Lineage

The dataset nutrition label

* Common metadata

* Provenance

* Variable description and statistics
* Pair plots

* Probabilistic models

* @round truth correlations

Source: The Dataset nutrition label - MIT, Harvard ‘18
THE

y @ pferreiro92 L. JLINUX
O



Lineage

IBM proposes a Supplier’s Declaration of Conformity (SDoC) that helps provide
information about the four key pillars of trusted Al.

|Il

Dataset “nutritional labe

Bias assessment and mitigation

Algorithm explainability and interpretability

Robustness policy
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Lineage

Proposal overview

Policy Document

Training Data

l

ML System/
Algorithm

Fairness system
* Policy interpretation
* Intermediate representation
* Run time check
* Auditing

Runtime alerts !

Source: An End-To-End Machine Learning Pipeline That Ensures Fairness Policies, IBM Research ‘17
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List of fields accessed with timestamp
List of fields protected by the fairness policies

Fairness check report

Immutable storage

Blockchain
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Conclusion

Al is experiencing a renaissance and, according to Gartner, it’s vital that we

“build Al right, use Al right, keep Al right”.

The values adopted to build today’s Al systems will be reflected in the decisions
those systems make for a decade or more.
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Thank you! Q&A

@pferreiro92
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