

Lessons Learned from Using ONAP to Build a Multi-vendor SD-WAN Solution

Jack Raynor

Sr. Director Professional Services jack.raynor@arris.com

Jaspreet Sachdev PLM Orchestration jaspreet.sachdev@arris.com

REDEFINING CONNECTIVITY ARRIS

IF YOU HAVE
DIGITAL TV OR
BROADBAND
SERVICES,
YOU ARE MOST
LIKELY USING

ARRIS TECHNOLOGY

ARRIS

End-to-end technology innovation and the experience to bring it all together

Multi-Domain Service Orchestration

"ARRIS provides software-defined solutions for Multi-Domain Service Orchestration that streamline service activation, enhance service agility and help Service Providers free themselves from the constraints of their legacy networks."

ARRIS Managed Networks

As ARRIS's Managed Network business scales, automation and orchestration are essential!

- ARRIS provides Managed Network Solutions for Service Providers serving SMB and Enterprise customers
 - Managed Wireless and Wired
 - Managed Router/Firewall
- Includes Operator-defined VNFs with service chaining
 - Firewall, Router, NAT, DHCP, Content Filtering, Intrusion detection
- Enables multi-vendor VNF ecosystem
- Leverages open source technologies

Strategy

Managed Network Services: Automation & Orchestration

Support a Multi-Vendor Ecosystem

- Create unique services agnostic of vendorspecific components
- Support various types of VNFs

Multi-Deployment Scenarios

- Universal CPE
- Virtual CPE
- Hybrid

Open Source Software Approach

- ONAP, OSM
- Continue to avoid vendor lock

Standards Development Organizations

- Organizations
- MEF, ETSI, IETF
- OASIS-TOSCA
- TMForum Alignment

Mission: Digital Transformation

MDSO Architecture

Different Deployment Scenarios

1

"Thin" CPE (vCPE) tunnels traffic to Edge-Cloud VNFs

2

"Thick" CPE (uCPE) runs local VNFs

3

Hybrid Scenario managed by same Orchestration layer

Why ONAP for Automation & Orchestration

Building blocks for Multi-Domain Service Orchestration

- ✓ Model Driven
- ✓ Standards-Based Interfaces
- ✓ Centralized Design Studio
- ✓ Modular & Microservices Architecture
- ✓ Policy Driven Run Time
- ✓ Multi-Tenancy
- ✓ L1-L7 Controllers
- ✓ Pluggable Architecture
- ✓ Edge Automation*

Approach

ITERATE

DESIGN

ORCHESTRATE

OPERATE

- Use Case Analysis
- VNF Evaluation
- VNF Onboarding
- Basic Functional Testing
- Service Function Chaining

- VNF LCM Validation
- VNF CI & CD
- VNF Monitoring
- Network Service Chaining

- Lifecycle Management
- Closed Loop Integration
- Performance

VNF Terminology

Design Time View: **SERVICE A**

Run Time View: **SERVICE A**

VNF Onboarding Steps

Lessons Learned

Observations	What We Did
Limitations in validation and verification of onboarded VNF in ONAP	 Manual verification at different steps of onboarding and orchestration of VNF Manual verification for compatibility checks, translation of design time entities to run time entities
Vendor VNF can provide multiple functions packaged in a single VM	 Developed integration wrapper on VNF to orchestrate deployment & key LCM operations Used different BPMN flows in ONAP to support different LCM operations
Existing Network Services limit optimized use of VNFs.	 As a first step modeled VNF's to match current service scenarios and operations Iterated analysis of use cases to generalize the build and deployment of VNFs
Many ONAP workflows – hard to choose best	 Study ONAP use cases to understand BPMNs, controllers and internal integrations. Testing of ONAP components to pick between existing SO flows, customization or new flows
SDC framework limitations for complete onboarding	 Automated the pre-onboarding activities using the REST API of appropriate ONAP components

Summary

Iterate VNF
design approach
over several use
cases

Allow for standard and propriety VNF onboarding

Iterate over service chaining scenarios

Design tools to simplify onboarding

What's Next?

Reusable building blocks to ensure service agility

CNF over
Kubernetes VIM

Open API for cross provider automation

Performance commitment

