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Introduction

“… monitoring multiple files to see if IO is possible on 
any of them...”

- man 7 epoll
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Introduction

“… monitoring multiple files to see if IO is possible on 
any of them...”

- man 7 epoll

• epoll_create(2) – fd new epoll instance.

• epoll_ctl(2) – manage file descriptors regarding the 
interested-list.

• epoll_wait(2) – main workhorse, block tasks until IO 
becomes available.
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Introduction

• Epoll scalability is better than it’s (Linux) rivals.
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• Epoll scalability is better than it’s (Linux) rivals.

• How is this accomplished?
‒ Separate setup and waiting phases.

‒ Keeping kernel internal data structures.

• This results in:
‒ Upon ready IO, select/poll are O(n), epoll is O(n_ready).

‒ Do not have to pass description of the fds.

‒ Epoll can monitor an unlimited amount of fds.

Introduction
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Introduction

                             “epoll is fundamentally broken”

–some people online

• Was not initially designed for multi-threading in mind.

• Special programming is needed to use epoll in an 
efficient and race free manner.
‒ EPOLLEXCLUSIVE – Wakeup a single task (level-triggered). 

Avoid thundering herd problem.

‒ EPOLLONESHOT – Disable fd after receiving an event. Must 
rearm.
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Introduction

                             “epoll is fundamentally broken”

–some people online

• Associates the file descriptor with the underlying 
kernel object. 
‒ Tied to the lifetime of the object, not the fd.

• Broken fork/close(2) semantics.
‒ It is possible to receive events after closing the fd.

‒ Must EPOLL_CTL_DEL the fd before closing.



Epoll Internal Architecture



13

(main) Data Structures

Instance from epoll_create() Every fd in the interested-list
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(main) Data Structures

List (FIFO) of fds with ready IO

Tmp list while tx to userspace



15

Locking Rules

Mutex: serialization while transferring events to userspace 
copy_to_user might block.
Protect epoll_ctl(2) operations, file exit, etc.

Spinlock: serialization inside IRQ context, cannot sleep.
Protects ready and overflow list manipulation. 
(Must already hold the ep->mutex)
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Locking Rules

Mutex: serialization while transferring events to userspace 
copy_to_user might block.
Protect epoll_ctl(2) operations, file exit, etc.

Spinlock: serialization inside IRQ context, cannot sleep.
Protects ready and overflow list manipulation. 
(Must already hold the ep->mutex)

Fetch events block

Send events

Wakeup (signal, timeout)

No available

available

epoll_wait(2)
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Locking Rules

• Both send events and wakeup callback need to 
operate on the ready list.

• When sending events, the overflow list kicks in.
‒ Send events will run without the spinlock on a private list.
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Locking Rules

spin_lock_irq(&ep->lock);

list_splice_init(&ep->rdllist, &txlist);

WRITE_ONCE(ep->ovflist, NULL);

spin_unlock_irq(&ep→lock);

<SEND_EVENTS>

spin_lock_irq(&ep→lock);

for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;

     nepi = epi->next, epi->next = EP_UNACTIVE_PTR)

list_add(&epi->rdllink, &ep→rdllist);

WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);

list_splice(&txlist, &ep→rdllist);

spin_unlock_irq(&ep->lock);

ep_poll_callback():
Events that happen during this period are

 chained in ep->ovflist and requeued later on.



Upstreamed Performance Work
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Loosening interrupt safety

• Epoll is a facility meant for userspace.
‒ (Almost) always executes in process context.

‒ ep_poll_callback() is often called under irq context.

• Avoid the irq save/restore dance when acquiring 
ep->lock when we know that interrupts are not 
already disabled.
‒ Benefits in both virtual and baremetal scenarios (ie: x86 

replaces PUSHF/POPF for STI/CLI insns).

‒ irqsave: needs all flags stable, needs prior insns to retire.

‒ irqrestore: changes all flags, expensive insn 
dependencies.
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Loosening interrupt safety
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Loosening interrupt safety
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Loosening interrupt safety
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Loosening interrupt safety



28

Optimizing ep_poll()

• Main epoll_wait(2) workhorse.

• Locklessly check for available events
‒ False positive: we still go into send_events.

‒ False negative: we recheck again before blocking.

‒ Reduces the scope of the spinlock for the blocking case.

• Do not arm the waitqueue multiple times.
‒ Avoid taking locks for every loop iteration (4 lock 

ops/retry).

• Reduce memory barriers upon failure.
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Reduce contention on ep_poll_callback()

• Addresses ep→lock contention.

• Converts ep spinlock to a rwlock.
‒ Ready and overflow lists are modified with a read lock + 

xchg() ops.

‒ Stabilize lists elsewhere by using the writer lock.

• Increases the bandwidth of events which can be 
delivered from sources to the poller. 
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Reduce contention on ep_poll_callback()
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Other Performance Work
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Batching interested-list ops

• Epoll doesn’t allow more than one updates on the 
interest set in a single system call.
‒ Avoid multiple system calls.

• Has been proposed upstream 2012, 2015.

• With side channel attacks, is this worth looking at 
again?
‒ Ie: MDS mitigation can flush CPU buffers upon returning 

to userspace.

• Extend the interface? New syscalls?
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Batching interested-list ops

int epoll_ctl_batch(int epfd, int flags, int ncmds, struct epoll_ctl_cmd *cmds);

• Call atomicity.
‒ To succeed do all operations have to succeed?

• Same semantics as non-batched call.
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Ring buffer for Epoll

• Fetch new events without calling into the kernel.
‒ Ring bufer is shared between the application and the 

kernel to transmit events as they happen.

• MO is not straightforward.
‒ epoll_create2() and EPOLL_USERPOLL

‒ epoll_ctl() to add items to the interested-list.

‒ mmap() to get at the actual RB.

• Can only be Edge-Triggered.
‒ Only one event is added to the RB will be added to the 

ring buffer when a fd is ready.
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Ring buffer for Epoll

• Yet another ring buffer in the kernel
‒ perf events, ftrace, io_uring, AF_XDP.

• EPOLLEXCLUSIVE is not supported – big 
drawback.

• API is complex.



Benchmarking Epoll
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What to benchmark?

• Measure and stress internal changes to epoll.
‒ As opposed to comparing against other IO multiplexing 

techniques.

‒ We don’t care about the notification method (socket, eventfd, 
pipes, etc… they’re all fine).

‒ Can be considered pathological – take with a grain of salt; as 
with benchmarks of any nature.

• Main emphasis on epoll_wait(2).
‒ Locking/algorithmic changes.

‒ Wakeup latencies.
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What to benchmark?

• Model (somewhat) common load balancing scenarios.

• Single vs multiqueue (ie: when designing a tcp server)
‒ The queue is internal to the kernel via epoll_wait.
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What to benchmark?

• Shared and private file descriptors.
‒ Per ready IO wakeup one and multiple tasks 

(EPOLLEXCLUSIVE semantics).

• Nested epoll file descriptors.

• Level and Edge-Triggered.
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Example: perf-bench (single queue)
./perf bench epoll wait -t 16
# Running 'epoll/wait' benchmark:
Run summary [PID 128378]: 16 threads monitoring on 64 file-descriptors for 8 secs.

[thread  0] fdmap: 0x1d87d70 ... 0x1d87e6c [ 36099 ops/sec ]
[thread  1] fdmap: 0x1d87fd0 ... 0x1d880cc [ 36991 ops/sec ]
[thread  2] fdmap: 0x1d88230 ... 0x1d8832c [ 37016 ops/sec ]
[thread  3] fdmap: 0x1d88490 ... 0x1d8858c [ 37158 ops/sec ]
[thread  4] fdmap: 0x1d886f0 ... 0x1d887ec [ 36546 ops/sec ]
[thread  5] fdmap: 0x1d88950 ... 0x1d88a4c [ 36763 ops/sec ]
[thread  6] fdmap: 0x1d88bb0 ... 0x1d88cac [ 36877 ops/sec ]
[thread  7] fdmap: 0x1d88e10 ... 0x1d88f0c [ 36943 ops/sec ]
[thread  8] fdmap: 0x1d89070 ... 0x1d8916c [ 37059 ops/sec ]
[thread  9] fdmap: 0x1d892d0 ... 0x1d893cc [ 37017 ops/sec ]
[thread 10] fdmap: 0x1d89530 ... 0x1d8962c [ 38067 ops/sec ]
[thread 11] fdmap: 0x1d89790 ... 0x1d8988c [ 38082 ops/sec ]
[thread 12] fdmap: 0x1d899f0 ... 0x1d89aec [ 38168 ops/sec ]
[thread 13] fdmap: 0x1d89c50 ... 0x1d89d4c [ 37962 ops/sec ]
[thread 14] fdmap: 0x1d89eb0 ... 0x1d89fac [ 37925 ops/sec ]
[thread 15] fdmap: 0x1d8a110 ... 0x1d8a20c [ 38039 ops/sec ]

Averaged 37294 operations/sec (+- 0.43%), total secs = 8
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Example: perf-bench (multi-queue)
./perf bench epoll wait -t 16 --multiq
# Running 'epoll/wait' benchmark:
Run summary [PID 128415]: 16 threads monitoring on 64 file-descriptors for 8 secs.

[thread  0] fdmap: 0x2c6bd80 ... 0x2c6be7c [ 80864 ops/sec ]
[thread  1] fdmap: 0x2c6bfe0 ... 0x2c6c0dc [ 80864 ops/sec ]
[thread  2] fdmap: 0x2c6c240 ... 0x2c6c33c [ 80864 ops/sec ]
[thread  3] fdmap: 0x2c6c4a0 ... 0x2c6c59c [ 80864 ops/sec ]
[thread  4] fdmap: 0x2c6c700 ... 0x2c6c7fc [ 80864 ops/sec ]
[thread  5] fdmap: 0x2c6c960 ... 0x2c6ca5c [ 80864 ops/sec ]
[thread  6] fdmap: 0x2c6cbc0 ... 0x2c6ccbc [ 80864 ops/sec ]
[thread  7] fdmap: 0x2c6ce20 ... 0x2c6cf1c [ 80864 ops/sec ]
[thread  8] fdmap: 0x2c6d080 ... 0x2c6d17c [ 80864 ops/sec ]
[thread  9] fdmap: 0x2c6d2e0 ... 0x2c6d3dc [ 80864 ops/sec ]
[thread 10] fdmap: 0x2c6d540 ... 0x2c6d63c [ 80864 ops/sec ]
[thread 11] fdmap: 0x2c6d7a0 ... 0x2c6d89c [ 80864 ops/sec ]
[thread 12] fdmap: 0x2c6da00 ... 0x2c6dafc [ 80864 ops/sec ]
[thread 13] fdmap: 0x2c6dc60 ... 0x2c6dd5c [ 80864 ops/sec ]
[thread 14] fdmap: 0x2c6dec0 ... 0x2c6dfbc [ 80864 ops/sec ]
[thread 15] fdmap: 0x2c6e120 ... 0x2c6e21c [ 80861 ops/sec ]

Averaged 80863 operations/sec (+- 0.00%), total secs = 8



Thank you.
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