
Epoll Kernel Performance
Improvements

Open Source Summit – July 2019. Tokyo, Japan.

Davidlohr Bueso, SUSE Labs.

2

Agenda (40 minutes).

1. Introduction.

2. Epoll Internal Architecture.

3. Upstreamed Performance Work.

4. Other Performance Work.

5. Benchmarking Epoll.

3

Introduction

“… monitoring multiple files to see if IO is possible on
any of them...”

- man 7 epoll

4

Introduction

“… monitoring multiple files to see if IO is possible on
any of them...”

- man 7 epoll

• epoll_create(2) – fd new epoll instance.

• epoll_ctl(2) – manage file descriptors regarding the
interested-list.

5

Introduction

“… monitoring multiple files to see if IO is possible on
any of them...”

- man 7 epoll

• epoll_create(2) – fd new epoll instance.

• epoll_ctl(2) – manage file descriptors regarding the
interested-list.

• epoll_wait(2) – main workhorse, block tasks until IO
becomes available.

6

Introduction

• Epoll scalability is better than it’s (Linux) rivals.

7

• Epoll scalability is better than it’s (Linux) rivals.

• How is this accomplished?
‒ Separate setup and waiting phases.

‒ Keeping kernel internal data structures.

• This results in:
‒ Upon ready IO, select/poll are O(n), epoll is O(n_ready).

‒ Do not have to pass description of the fds.

‒ Epoll can monitor an unlimited amount of fds.

Introduction

8

Introduction

 “epoll is fundamentally broken”

–some people online

• Was not initially designed for multi-threading in mind.

• Special programming is needed to use epoll in an
efficient and race free manner.
‒ EPOLLEXCLUSIVE – Wakeup a single task (level-triggered).

Avoid thundering herd problem.

‒ EPOLLONESHOT – Disable fd after receiving an event. Must
rearm.

9

Introduction

 “epoll is fundamentally broken”

–some people online

• Was not initially designed for multi-threading in mind.

• Special programming is needed to use epoll in an
efficient and race free manner.
‒ EPOLLEXCLUSIVE – Wakeup a single task (level-triggered).

Avoid thundering herd problem.

‒ EPOLLONESHOT – Disable fd after receiving an event. Must
rearm.

(threads A and B are waiting on epoll, LT)

 1. Kernel: receives 4095 bytes of data
 2. Kernel: Thread A is awoken (ie EPOLLEXCLUSIVE).
 3. Thread A: finishes epoll_wait(2)
 4. Kernel: receives 4 bytes of data
 5. Kernel: wakes up Thread B.
 6. Thread A: performs read(4096) and reads full buffer of 4096 bytes
 7. Thread B: performs read(4096) and reads remaining 3 bytes of data

(threads A and B are waiting on epoll, LT)

 1. Kernel: receives 4095 bytes of data
 2. Kernel: Thread A is awoken (ie EPOLLEXCLUSIVE).
 3. Thread A: finishes epoll_wait(2)
 4. Kernel: receives 4 bytes of data
 5. Kernel: wakes up Thread B.
 6. Thread A: performs read(4096) and reads full buffer of 4096 bytes
 7. Thread B: performs read(4096) and reads remaining 3 bytes of data

10

Introduction

 “epoll is fundamentally broken”

–some people online

• Was not initially designed for multi-threading in mind.

• Special programming is needed to use epoll in an
efficient and race free manner.
‒ EPOLLEXCLUSIVE – Wakeup a single task (level-triggered).

Avoid thundering herd problem.

‒ EPOLLONESHOT – Disable fd after receiving an event. Must
rearm.

(threads A and B are waiting on epoll, LT)

 1. Kernel: receives 4095 bytes of data
 2. Kernel: Thread A is awoken (ie EPOLLEXCLUSIVE).
 3. Thread A: finishes epoll_wait(2)
 4. Kernel: receives 4 bytes of data
 5. Kernel: wakes up Thread B
 6. Thread A: performs read(4096) and reads full buffer of 4096 bytes
 7. Thread B: performs read(4096) and reads remaining 3 bytes of data

Data is split across threads and can be reordered without serialization.
The correct solution is to use EPOLLONESHOT and re-arm.

Plenty of examples:
https://idea.popcount.org/2017-02-20-epoll-is-fundamentally-broken-12/

(threads A and B are waiting on epoll, LT)

 1. Kernel: receives 4095 bytes of data
 2. Kernel: Thread A is awoken (ie EPOLLEXCLUSIVE).
 3. Thread A: finishes epoll_wait(2)
 4. Kernel: receives 4 bytes of data
 5. Kernel: wakes up Thread B
 6. Thread A: performs read(4096) and reads full buffer of 4096 bytes
 7. Thread B: performs read(4096) and reads remaining 3 bytes of data

Data is split across threads and can be reordered without serialization.
The correct solution is to use EPOLLONESHOT and re-arm.

Plenty of examples:
https://idea.popcount.org/2017-02-20-epoll-is-fundamentally-broken-12/

11

Introduction

 “epoll is fundamentally broken”

–some people online

• Associates the file descriptor with the underlying
kernel object.
‒ Tied to the lifetime of the object, not the fd.

• Broken fork/close(2) semantics.
‒ It is possible to receive events after closing the fd.

‒ Must EPOLL_CTL_DEL the fd before closing.

Epoll Internal Architecture

13

(main) Data Structures

Instance from epoll_create() Every fd in the interested-list

14

(main) Data Structures

List (FIFO) of fds with ready IO

Tmp list while tx to userspace

15

Locking Rules

Mutex: serialization while transferring events to userspace
copy_to_user might block.
Protect epoll_ctl(2) operations, file exit, etc.

Spinlock: serialization inside IRQ context, cannot sleep.
Protects ready and overflow list manipulation.
(Must already hold the ep->mutex)

16

Locking Rules

Mutex: serialization while transferring events to userspace
copy_to_user might block.
Protect epoll_ctl(2) operations, file exit, etc.

Spinlock: serialization inside IRQ context, cannot sleep.
Protects ready and overflow list manipulation.
(Must already hold the ep->mutex)

Fetch events block

Send events

Wakeup (signal, timeout)

No available

available

epoll_wait(2)

17

Locking Rules

• Both send events and wakeup callback need to
operate on the ready list.

• When sending events, the overflow list kicks in.
‒ Send events will run without the spinlock on a private list.

18

Locking Rules

spin_lock_irq(&ep->lock);

list_splice_init(&ep->rdllist, &txlist);

WRITE_ONCE(ep->ovflist, NULL);

spin_unlock_irq(&ep→lock);

<SEND_EVENTS>

spin_lock_irq(&ep→lock);

for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;

 nepi = epi->next, epi->next = EP_UNACTIVE_PTR)

list_add(&epi->rdllink, &ep→rdllist);

WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);

list_splice(&txlist, &ep→rdllist);

spin_unlock_irq(&ep->lock);

ep_poll_callback():
Events that happen during this period are

 chained in ep->ovflist and requeued later on.

Upstreamed Performance Work

20

Loosening interrupt safety

• Epoll is a facility meant for userspace.
‒ (Almost) always executes in process context.

‒ ep_poll_callback() is often called under irq context.

• Avoid the irq save/restore dance when acquiring
ep->lock when we know that interrupts are not
already disabled.
‒ Benefits in both virtual and baremetal scenarios (ie: x86

replaces PUSHF/POPF for STI/CLI insns).

‒ irqsave: needs all flags stable, needs prior insns to retire.

‒ irqrestore: changes all flags, expensive insn
dependencies.

24

Loosening interrupt safety

25

Loosening interrupt safety

26

Loosening interrupt safety

27

Loosening interrupt safety

28

Optimizing ep_poll()

• Main epoll_wait(2) workhorse.

• Locklessly check for available events
‒ False positive: we still go into send_events.

‒ False negative: we recheck again before blocking.

‒ Reduces the scope of the spinlock for the blocking case.

• Do not arm the waitqueue multiple times.
‒ Avoid taking locks for every loop iteration (4 lock

ops/retry).

• Reduce memory barriers upon failure.

29

Reduce contention on ep_poll_callback()

• Addresses ep→lock contention.

• Converts ep spinlock to a rwlock.
‒ Ready and overflow lists are modified with a read lock +

xchg() ops.

‒ Stabilize lists elsewhere by using the writer lock.

• Increases the bandwidth of events which can be
delivered from sources to the poller.

30

Reduce contention on ep_poll_callback()

8

16

32

0 2000 4000 6000 8000 10000 12000 14000

bandwidth of delivered events

throughput (events/ms)

th
re

a
ds

Other Performance Work

32

Batching interested-list ops

• Epoll doesn’t allow more than one updates on the
interest set in a single system call.
‒ Avoid multiple system calls.

• Has been proposed upstream 2012, 2015.

• With side channel attacks, is this worth looking at
again?
‒ Ie: MDS mitigation can flush CPU buffers upon returning

to userspace.

• Extend the interface? New syscalls?

33

Batching interested-list ops

int epoll_ctl_batch(int epfd, int flags, int ncmds, struct epoll_ctl_cmd *cmds);

• Call atomicity.
‒ To succeed do all operations have to succeed?

• Same semantics as non-batched call.

34

Ring buffer for Epoll

• Fetch new events without calling into the kernel.
‒ Ring bufer is shared between the application and the

kernel to transmit events as they happen.

• MO is not straightforward.
‒ epoll_create2() and EPOLL_USERPOLL

‒ epoll_ctl() to add items to the interested-list.

‒ mmap() to get at the actual RB.

• Can only be Edge-Triggered.
‒ Only one event is added to the RB will be added to the

ring buffer when a fd is ready.

35

Ring buffer for Epoll

• Yet another ring buffer in the kernel
‒ perf events, ftrace, io_uring, AF_XDP.

• EPOLLEXCLUSIVE is not supported – big
drawback.

• API is complex.

Benchmarking Epoll

37

What to benchmark?

• Measure and stress internal changes to epoll.
‒ As opposed to comparing against other IO multiplexing

techniques.

‒ We don’t care about the notification method (socket, eventfd,
pipes, etc… they’re all fine).

‒ Can be considered pathological – take with a grain of salt; as
with benchmarks of any nature.

• Main emphasis on epoll_wait(2).
‒ Locking/algorithmic changes.

‒ Wakeup latencies.

38

What to benchmark?

• Model (somewhat) common load balancing scenarios.

• Single vs multiqueue (ie: when designing a tcp server)
‒ The queue is internal to the kernel via epoll_wait.

39

What to benchmark?

• Model (somewhat) common load balancing scenarios.

• Single vs multiqueue (ie: when designing a tcp server)
‒ The queue is internal to the kernel via epoll_wait.

40

What to benchmark?

• Shared and private file descriptors.
‒ Per ready IO wakeup one and multiple tasks

(EPOLLEXCLUSIVE semantics).

• Nested epoll file descriptors.

• Level and Edge-Triggered.

41

Example: perf-bench (single queue)
./perf bench epoll wait -t 16
Running 'epoll/wait' benchmark:
Run summary [PID 128378]: 16 threads monitoring on 64 file-descriptors for 8 secs.

[thread 0] fdmap: 0x1d87d70 ... 0x1d87e6c [36099 ops/sec]
[thread 1] fdmap: 0x1d87fd0 ... 0x1d880cc [36991 ops/sec]
[thread 2] fdmap: 0x1d88230 ... 0x1d8832c [37016 ops/sec]
[thread 3] fdmap: 0x1d88490 ... 0x1d8858c [37158 ops/sec]
[thread 4] fdmap: 0x1d886f0 ... 0x1d887ec [36546 ops/sec]
[thread 5] fdmap: 0x1d88950 ... 0x1d88a4c [36763 ops/sec]
[thread 6] fdmap: 0x1d88bb0 ... 0x1d88cac [36877 ops/sec]
[thread 7] fdmap: 0x1d88e10 ... 0x1d88f0c [36943 ops/sec]
[thread 8] fdmap: 0x1d89070 ... 0x1d8916c [37059 ops/sec]
[thread 9] fdmap: 0x1d892d0 ... 0x1d893cc [37017 ops/sec]
[thread 10] fdmap: 0x1d89530 ... 0x1d8962c [38067 ops/sec]
[thread 11] fdmap: 0x1d89790 ... 0x1d8988c [38082 ops/sec]
[thread 12] fdmap: 0x1d899f0 ... 0x1d89aec [38168 ops/sec]
[thread 13] fdmap: 0x1d89c50 ... 0x1d89d4c [37962 ops/sec]
[thread 14] fdmap: 0x1d89eb0 ... 0x1d89fac [37925 ops/sec]
[thread 15] fdmap: 0x1d8a110 ... 0x1d8a20c [38039 ops/sec]

Averaged 37294 operations/sec (+- 0.43%), total secs = 8

42

Example: perf-bench (multi-queue)
./perf bench epoll wait -t 16 --multiq
Running 'epoll/wait' benchmark:
Run summary [PID 128415]: 16 threads monitoring on 64 file-descriptors for 8 secs.

[thread 0] fdmap: 0x2c6bd80 ... 0x2c6be7c [80864 ops/sec]
[thread 1] fdmap: 0x2c6bfe0 ... 0x2c6c0dc [80864 ops/sec]
[thread 2] fdmap: 0x2c6c240 ... 0x2c6c33c [80864 ops/sec]
[thread 3] fdmap: 0x2c6c4a0 ... 0x2c6c59c [80864 ops/sec]
[thread 4] fdmap: 0x2c6c700 ... 0x2c6c7fc [80864 ops/sec]
[thread 5] fdmap: 0x2c6c960 ... 0x2c6ca5c [80864 ops/sec]
[thread 6] fdmap: 0x2c6cbc0 ... 0x2c6ccbc [80864 ops/sec]
[thread 7] fdmap: 0x2c6ce20 ... 0x2c6cf1c [80864 ops/sec]
[thread 8] fdmap: 0x2c6d080 ... 0x2c6d17c [80864 ops/sec]
[thread 9] fdmap: 0x2c6d2e0 ... 0x2c6d3dc [80864 ops/sec]
[thread 10] fdmap: 0x2c6d540 ... 0x2c6d63c [80864 ops/sec]
[thread 11] fdmap: 0x2c6d7a0 ... 0x2c6d89c [80864 ops/sec]
[thread 12] fdmap: 0x2c6da00 ... 0x2c6dafc [80864 ops/sec]
[thread 13] fdmap: 0x2c6dc60 ... 0x2c6dd5c [80864 ops/sec]
[thread 14] fdmap: 0x2c6dec0 ... 0x2c6dfbc [80864 ops/sec]
[thread 15] fdmap: 0x2c6e120 ... 0x2c6e21c [80861 ops/sec]

Averaged 80863 operations/sec (+- 0.00%), total secs = 8

Thank you.

44

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

