
Institute for Defense Analyses
4850 Mark Center Drive  Alexandria, Virginia 22311-1882

Core Infrastructure Initiative (CII)

Best Practices Badge in 2019

Dr. David A. Wheeler

2019-03-14

dwheeler @ ida.org

Personal: dwheeler @ dwheeler.com,

Twitter: drdavidawheeler

GitHub & GitLab: david-a-wheeler

https://dwheeler.com

This presentation released under CC-BY-3.0+ license

Background

 It is not the case that “all OSS* is insecure” … or
that “all OSS is secure”
 Just like all other software, some OSS is (relatively)

secure.. and some is not

 Heartbleed vulnerability in OpenSSL
 Demonstrated in 2014 that some widely-used OSS didn’t

follow commonly-accepted practices & needed investment
for security

 Linux Foundation created Core Infrastructure
Initiative (CII) in 2014
 “to fund and support critical elements of the global

information infrastructure”

 “CII is transitioning from point fixes to holistic solutions for
open source security”

1*OSS=Open source software

CII Best Practices Badge

 OSS tends to be more secure if it follows good

security practices, undergoes peer review, etc.

 How can we encourage good practices?

 How can anyone know good practices are being followed?

 Badging project approach:

 Identified a set of best practices for OSS projects

 For production of OSS (for license compliance, see OpenChain)

 Based on existing materials & practices

 Created web application: OSS projects self-certify

 If OSS project meets criteria, it gets a badge (scales!)

 No cost, & independent of size / products / services /

programming language

 Self-certification mitigated by automation, public display of

answers (for criticism), LF spot-checks, LF can override
2

BadgeApp: Home page

3

To get your OSS project a badge, go to

https://bestpractices.coreinfrastructure.org/

Criteria

 Three badge levels (passing, silver, gold)

 For higher levels, must meet previous level

 Passing:

 Captures what well-run projects typically already do

 Not “they should do X, but no one does that”

 66 criteria in 6 groups:

 Basics, Change Control, Reporting, Quality, Security,

Analysis

 Silver: Harder but possible for 1-person projects

 Gold requires multiple developers

 bus factor > 1*, 2-person review

4

Source: https://github.com/coreinfrastructure/best-practices-badge/

blob/master/doc/criteria.md

Badge scoring system

 To obtain a badge, all:

 MUST and MUST NOT criteria (42/66) must be met

 SHOULD (10/66) met, OR unmet with justification

 Users can see those justifications & decide if that’s enough

 SUGGESTED (14/66) considered (met or unmet)

 People don’t like admitting they didn’t do something

 In some cases, URL required in justification (to point

to evidence; 8/66 require this)

5

Some major projects with a best practice badge

6

Lots of projects participating & getting badges!

 2,178 participating projects (1,016 on 2017-09-19)

 265 passing projects (105 on 2017-09-19)

Data as of 2019-03-06
7

CII badges are increasingly getting adopted!

8Source: https://bestpractices.coreinfrastructure.org/project_stats

as of 2019-03-06

All

projects

Projects

with non-

trivial

progress

Over 2,000 projects participating!

Over 260 passing!

General availability May 2016

What about silver & gold?

 Silver & gold level badges intentionally
harder to get (more demanding)

 For now we’ve focused on getting projects
participating & passing, not silver/gold

 We want projects to earn silver/gold

 Non-passing projects appear to be in especially
bad shape - focus on the bigger problem!

 Currently only 3 gold projects & 11 projects
with silver (including gold earners)

 But this measure hides the steady progress made
by many projects…

9

Many projects working towards silver & gold

10

Progress

to silver

Progress

to gold

Source: https://bestpractices.coreinfrastructure.org/project_stats

as of 2019-03-06

66 projects are halfway or better,

including 11 projects with silver

19 projects are halfway or better,

including 3 projects with gold

Some communities encouraging badges

 Cloud Native Computing Foundation (CNCF)*
 Maturity levels: Sandbox → incubating → graduated

 For graduated level must “have achieved and
maintained a CII Best Practices Badge.”
 Containerd recently graduated, has passing badge

 R community discussing recommending badges
 2018 survey:

 90% believe badge will provide value to the R community’s
package developers or package users

 77% saying it has benefit for both developers and users

 74% would be willing to try it

 Multiple R packages tried it out & began working
towards badges as part of discussion
 DBI passing

 Close to passing include ggplot2, covr, dodgr, netReg

11

Sources: CNCF Graduation Criteria v1.2

https://github.com/cncf/toc/blob/master/process/graduation_criteria.adoc

“Should R Consortium Recommend CII Best Practices Badge for R Packages: Latest Survey Results” https://www.r-

consortium.org/blog/2018/07/26/should-r-consortium-recommend-cii-best-practices-badge-for-r-packages-latest-survey-results

Remote access enabled

 Can easily embed current badge image

 <img src="https://bestpractices.coreinfrastructure.
org/projects/PROJECT_NUMBER/badge">

 Easily shows current state on GitHub, etc.

 REST API enables easy JSON data access

 Including project database download for analysis

 See https://github.com/coreinfrastructure/best-
practices-badge/blob/master/doc/api.md

 Cross Origin Resource Sharing (CORS)

 Enables data access from client-side JavaScript

 E.g., for fancy client-side dashboards

12

Example: CNCF landscape

 CNCF landscape <https://landscape.cncf.io/>
easily accesses badge data

13

Sample clarifications

 vulnerabilities_fixed_60_days (PR #1188)
 “There MUST be no unpatched vulnerabilities of medium or high

severity that have been publicly known for more than 60 days.”

 Added: “… this badge criterion, like other criteria, applies to the
individual project. Some projects are part of larger umbrella… An
individual project often cannot control the rest, but an individual
project can work to release a vulnerability patch in a timely way.”

 hardened_site (PR #1187)
 “The project website, repository (if accessible via the web), and

download site (if separate) MUST include key hardening
headers… [GitHub is known to meet this]”

 Added: “Static web sites with no ability to log in via the web
pages may omit the CSP and X-XSS-Protection HTTP
hardening headers, because in that situation those headers are
less effective.”

14

Most common challenges for getting a badge

 All projects 90%+ but not passing (2019-03-07)

 265 projects. MUST with Unmet or “?” => Top 10 challenges:

15

Criterion %miss Old rank#

1 vulnerability_report_process 21% 1

2 tests_are_added 17% 3

3 vulnerability_report_private 15% 4

4 know_secure_design 13% 9

5 vulnerabilities_fixed_60_days 13% 24

6 test_policy 13% 5

7 know_common_errors 13% 7

8 static_analysis 11% 8

9 static_analysis_fixed 11% 21

10 sites_https 9% 2

This data is as of

2019-03-07,

old rank from

2017-09-06

Analysis

Vulnerability

reporting
Tests

HTTPS
Know

secure

development

Mostly same challenges as 2017-09-06. HTTPS becoming less of a problem,

dropped from #2 to #10. Unclear why fixing things has become bigger problem..!

Fixing

BadgeApp dependencies and security

 Tiny amount of new code in our system…

 Because almost all code is reused
 Direct dependencies = 75 gems

 Direct AND indirect dependencies = 197 gems

 Plus OS, language runtime, RDBMS, etc.

 Today a key security concern for most projects is
vulnerabilities through their dependencies
 Minimize dependencies, ask them to minimize their run-time

dependencies, sanity check of direct dependencies

 Package manager: Track what we have, trivially update
packages

 Dependency tools*: detect & report packages with known
vulnerabilities (GitHub + bundle audit)

 Thorough automated tests: enable quick update, test, & ship to
production (we have 100% coverage)

 Other measures, esp. hardening (such as CSP), reduce risk in
meantime

16* Origin analysis / software composition analysis tools

Application security: Using an assurance case

 We want applications to be generally secure

 However, security:
 Can’t be directly measured (“how many kilograms”)

 Is an emergent property (totality of components)

 Is often a negative property (“never does X”)

 How can you know “we’ve done enough”?
 “Did long list of things” doesn’t provide confidence

 How do you know those were the right things?

 Must be able to justify & refine later

 Must avoid breaking the bank

 Useful approach: an “assurance case”
 Start with overall goal, repeatedly break into smaller parts

 Not complicated – keeps track of what needs to be done

 Pattern we’ve used may be useful to you too!

17

See: A Sample Security Assurance Case Pattern by David A. Wheeler,

December 2018, IDA Paper P-9278

Assurance case: Top level (figure 1)

18

Assets &
threat actors
identified &
addressed

System is adequately
secure against moderate

threats

Confidentiality Integrity Availability

Security implemented in
all software

development processes

Security requirements
identified and met by

functionality

Security implemented by
software life cycle processes

See next figure

Access
control

Identifi-
cation

Authenti-
cation

Authori-
zation

Fill in the more specific

requirements, then the

arguments of why they are

met (design, implementation,

verification,…) – but

avoid repetition

Assurance case: Next level (partial figure 2)

19

…
Not a waterfall-

These are

processes, not

phases

Life cycle technical processes (figure 2)

20

Verification:

many tools

Design:

Esp.

attack

model +

Saltzer

& Schr-

oeder

principle

s

Security in implementation (figure 3)

21

All
OWASP
top 10
(2013 &
2017)

countered

Entire most-
relevant security

guide applied

Hardening
applied

Hardened
outugoing HTTP

headers, including
restrictive CSP

Incoming
rate
limits

Force
HTTPS,
including
via HSTS

CSRF
token

harden-
ing

Outgoing
email

rate limit

1. Injection (incl.
SQL injection)

2. Auth &
session

3. XSS

4. Insecure
object references

5. Security
misconfiguration

6. Sensitive data
exposure

7. Missing
access control

8. CSRF

9. Known
vulnerabilities

10. Unvali-
dated

redirect/fwd

See securely reuse
(supply chain)

See security guide applied

Most implementation
vulnerabilities are due to

common types of
implementation errors or

common misconfigurations,
so countering them greatly

reduces security risks

Reduce/eliminate
impact if defect exists

All of the most
common important

implementation
vulnerability types

(weaknesses)
countered

All of the most common
known security-relevant
misconfiguration errors

countered

11. XXE (2017 A4)

12. Insecure
deserialization

(2017 A8)

13. Insufficient
logging and

,onitoring (2017
A10)

Encrypted
email

addresses

Cookie
limits

Securely
reuse

Review before use

Get authentic
version

Use package
manager

Security in
implementation

OWASP

Top 10 Web

hardening,

esp. CSP

Reuse/

Supply

chain

Got on Hacker News (HN)!

 Badge-related post got on Hacker News front page on 2018-10-06
 “Certainly not knocking on the badge or the practices…I just found it

amusing that PHP often gets a bad rap, but then shows up at the top of
the listed projects for objectively good development practices.” -
reindeerer

 “I just found and read through the criteria list. It's mind-bogglingly
exhaustive, but in a very good way, and an excellent catalyst for
maintainable, secure software. I'd regard it as universally applicable
to any and all code.” – exikyut

 “Lots of self-proclaimed ‘experts’ love to say ‘do X and Y and Z and you
will be successful because these are best practices’, but it's all a bunch
of snake oil… ‘Best practices are best not practiced.’” – userbinator,
dissenting, but then downvoted & replied to…

 “Best practices are a bit like good genes. [They’re] by no means a
guarantee of success, fame, glory and riches, but damn if they don't
make things easier.” - reindeerer

 “I see absolutely nothing dogmatic or cargo cult about the
recommendations they make. They are completely sensible, and a
decent guideline for improving the technical support infrastructure of a
project.” - throwaway2048

22Source: https://news.ycombinator.com/item?id=18157494

Key URLs

 CII best practices badge (get a badge):

 https://bestpractices.coreinfrastructure.org/

 CII best practices badge project:

 https://github.com/coreinfrastructure/best-practices-

badge

23

My thanks to the many who reviewed or helped develop the badging criteria and/or the software to implement it. This includes:

Mark Atwood, Tod Beardsley, Doug Birdwell, Alton(ius) Blom, Hanno Böck, enos-dandrea, Jason Dossett, David Drysdale,

Karl Fogel, Alex Jordan (strugee), Sam Khakimov, Greg Kroah-Hartman, Dan Kohn, Charles Neill (cneill), Mark Rader, Emily

Ratliff, Tom Ritter, Nicko van Someren, Daniel Stenberg (curl), Marcus Streets, Trevor Vaughan, Dale Visser, Florian Weimer

Involved in OSS?

 If you lead an OSS project, what you do matters!

 People depend on the software you create

 The practices you apply affect the result

 Secure or quality software is not an accident

 Please try to get a badge, & show when you have it

 If you’re considering using an OSS project

 Check on the project – should you use it?

24

Conclusions

 CII Best Practices badge use continues to
(quietly) grow

 2,178 participating projects & 265 passing

 Fewer silver & gold, but steady progress

 APIs enable many uses of its data

 Modern software is mostly third party code

 Prepare for their inevitable vulnerabilities

 Assurance cases can help make secure
software

 OSS projects: Work on getting a badge!

25

Backup

26

Sample impacts of CII badge process (1 of 2)

 OWASP ZAP (web app scanner)

 Simon Bennetts: “[it] helped us improve ZAP quality… [it] helped us

focus on [areas] that needed most improvement.”

 Change: Significantly improved automated testing

 CommonMark (Markdown in PHP) changes:

 TLS for the website (& links from repository to it)

 Publishing the process for reporting vulnerabilities

 OPNFV (open network functions virtualization)

 Change: Replaced no-longer-secure crypto algorithms

 JSON for Modern C++

 “I really appreciate some formalized quality assurance which even

hobby projects can follow.”

 Change: Added explicit mention how to privately report errors

 Change: Added a static analysis check to continuous integration script

27Source: https://github.com/coreinfrastructure/best-practices-badge/wiki/Impacts

Sample impacts of CII badge process (2 of 2)

 BRL-CAD

 Probably would have taken an hour uninterrupted, getting to 100%

passing was relatively easy

 Website certificate didn’t match our domain, fixed

 POCO C++ Libraries

 “... thank you for setting up the best practices site. It was really helpful

for me in assessing the status…”

 Updated the CONTRIBUTING.md file to include a statement on

reporting security issues

 Updated the instructions for preparing a release in the Wiki to include

running clang-analyzer

 Enabled HTTPS for the project website

 GNU Make

 HTTPS. Convinced Savannah to support HTTPS for repositories (it

supported HTTPS for project home pages)

28Source: https://github.com/coreinfrastructure/best-practices-badge/wiki/Impacts

Gold projects

 BadgeApp
 BadgeApp is the web application that allows

developers to provide information about their
project and (hopefully) get a Core Infrastructure
Initiative (CII)...

 Zephyr Project
 The Zephyr Project is a small, scalable real-time

operating system for use on resource-constrained
systems supporting multiple architectures.
Developers are...

 league/commonmark
 Markdown parser for PHP based on the

CommonMark spec.

29

Tests

 Criteria

 #1 The project MUST have evidence that such tests are being

added in the most recent major changes to the project.

[tests_are_added]

 #4 The project MUST have a general policy (formal or not) that

as major new functionality is added, tests of that functionality

SHOULD be added to an automated test suite. [test_policy]

 Automated testing is important

 Quality, supports rapid change, supports updating dependencies

when vulnerability found

 No coverage level required – just get started

30

Vulnerability reporting

 Criteria

 #2 “The project MUST publish the process for reporting

vulnerabilities on the project site.” [vulnerability_report_process]

 #8 “If private vulnerability reports are supported, the project

MUST include how to send the information in a way that is kept

private.” [vulnerability_report_private]

 Just tell people how to report!

 In principle easy to do – but often omitted

 Projects need to decide how

31

HTTPS

 #3 “The project sites (website, repository, and download

URLs) MUST support HTTPS using TLS.” [sites_https]

 Details:

 You can get free certificates from Let's Encrypt.

 Projects MAY implement this criterion using (for example)

GitHub pages, GitLab pages, or SourceForge project pages.

 If you are using GitHub pages with custom domains, you MAY

use a content delivery network (CDN) as a proxy to support

HTTPS.

 We’ve been encouraging hosting systems to support

HTTPS

32

Analysis

 #5 “At least one static code analysis tool MUST be

applied to any proposed major production release of the

software before its release, if there is at least one

FLOSS tool that implements this criterion in the selected

language.” [static_analysis]

 A static code analysis tool examines the software code (as

source code, intermediate code, or executable) without

executing it with specific inputs.

 #6 “All medium and high severity exploitable

vulnerabilities discovered with dynamic code analysis

MUST be fixed in a timely way after they are confirmed.”

[dynamic_analysis_fixed]

 Early versions didn’t allow “N/A”; this has been fixed.

33

Know secure development

 Criteria

 #8 “The project MUST have at least one primary developer who

knows how to design secure software.” [know_secure_design]

 #9 “At least one of the primary developers MUST know of

common kinds of errors that lead to vulnerabilities in this kind of

software, as well as at least one method to counter or mitigate

each of them.” [know_common_errors]

 Specific list of requirements given – doesn’t require

“know everything”

 Perhaps need short “intro” course material?

34

Documentation

 #10 “The project MUST include reference documentation that

describes its external interface (both input and output).”

[documentation_interface]

 Some OSS projects have good documentation – but some do not

35

Silver: Sample criteria (1 of 2)

 The project MUST clearly define and document its project

governance model (the way it makes decisions, including key roles).

[governance]

 The project MUST be able to continue with minimal interruption if

any one person is incapacitated or killed… [you] MAY do this by

providing keys in a lockbox and a will providing any needed legal

rights (e.g., for DNS names). [access_continuity]

 The project MUST have FLOSS automated test suite(s) that provide

at least 80% statement coverage if there is at least one FLOSS tool

that can measure this criterion in the selected language.

[test_statement_coverage80]

 The project MUST automatically enforce its selected coding style(s)

if there is at least one FLOSS tool that can do so in the selected

language(s). [coding_standards_enforced]

 The project MUST implement secure design principles (from

"know_secure_design"), where applicable…

[implement_secure_design] 36

Silver: Sample criteria (2 of 2)

 The project results MUST check all inputs from potentially untrusted

sources to ensure they are valid (a whitelist), and reject invalid

inputs, if there are any restrictions on the data at all.

[input_validation]

 The project MUST cryptographically sign releases of the project

results intended for widespread use, and there MUST be a

documented process explaining [how to] obtain the public signing

keys and verify the signature(s)… [signed_releases]

 The project MUST provide an assurance case that justifies why its

security requirements are met. [It MUST…] [assurance_case]

 The project MUST use at least one static analysis tool … to look for

common vulnerabilities… , if there is at least one FLOSS tool that

can… [static_analysis_common_vulnerabilities]

 Projects MUST monitor or periodically check their external

dependencies (including convenience copies) to detect known

vulnerabilities, and fix exploitable vulnerabilities or verify them as

unexploitable. [dependency_monitoring] 37

Gold: Sample criteria

 The project MUST require two-factor authentication (2FA) for
developers for changing a central repository or accessing sensitive
data (such as private vulnerability reports)… [require_2FA]

 The project MUST have at least 50% of all proposed modifications
reviewed before release by a person other than the author…
[two_person_review]

 The project MUST have a "bus factor" of 2 or more. [bus_factor]

 The project MUST have a reproducible build… [build_reproducible]

 The project MUST apply at least one dynamic analysis tool to any
proposed major production release of the software before its release.
[dynamic_analysis]

 The project MUST have performed a security review within the last 5
years. This review MUST consider the security requirements and
security boundary. [security_review]

 Hardening mechanisms MUST be used in the software produced by the
project so that software defects are less likely to result in security
vulnerabilities. [hardening]

38

Statistics about the criteria themselves

39

Level Total

active

MUST SHOULD SUGG-

ESTED

Allow

N/A

Met

justifi-

cation or

URL

required

Includes

details

New at

this level

Passing 66 42 10 14 27 9 48 66

Silver 55 44 10 1 39 54 38 48

Gold 23 21 2 0 9 21 15 14

Source: https://bestpractices.coreinfrastructure.org/criteria

as of 2017-09-10

There are not a lot of gold criteria, but they’re challenging.

Natural languages supported

 English (en)

 Chinese (Simplified) / 简体中文 (zh-CN)

 French / Français (fr)

 German / Deutsch (de)

 Japanese / 日本語 (ja)

 Russian / Русский (ru)

40

Even if you can’t understand the detailed justifications,

you can see the criteria & claimed answers

Our sincere

thanks to all

the hard-working

translators!!

Open source software

 OSS: software licensed to users with these freedoms:
 to run the program for any purpose,

 to study and modify the program, and

 to freely redistribute copies of either the original or modified
program (without royalties to original author, etc.)

 Original term: “Free software” (confused with no-price)

 Other synonyms: libre sw, free-libre sw, FOSS, FLOSS

 Antonyms: proprietary software, closed software

 Widely used; OSS #1 or #2 in many markets
 “… plays a more critical role in the DoD than has generally been

recognized.” [MITRE 2003]

 OSS almost always commercial by law & regulation
 Software licensed to general public & has non-government use
 commercial software (in US law, per 41 USC 403)

41

Criteria categories and examples (1)

1. Basics
 The software MUST be released as FLOSS*. [floss_license]

 It is SUGGESTED that any required license(s) be approved by
the Open Source Initiative (OSI). [floss_license_osi]

2. Change Control
 The project MUST have a version-controlled source repository

that is publicly readable and has a URL. [repo_public]

 Details: The URL MAY be the same as the project URL. The project
MAY use private (non-public) branches in specific cases while the
change is not publicly released (e.g., for fixing a vulnerability before
it is revealed to the public).

3. Reporting
 The project MUST publish the process for reporting

vulnerabilities on the project site. [vulnerability_report_process]

42
*FLOSS=Free/Libre/Open Source Software

Criteria categories and examples (2)

4. Quality
 If the software requires building for use, the project MUST

provide a working build system that can automatically rebuild

the software from source code. [build]

 The project MUST have at least one automated test suite that

is publicly released as FLOSS (this test suite may be

maintained as a separate FLOSS project). [test]

 The project MUST have a general policy (formal or not) that as

major new functionality is added, tests of that functionality

SHOULD be added to an automated test suite. [test_policy]

 The project MUST enable one or more compiler warning flags,

a "safe" language mode, or use a separate "linter" tool to look

for code quality errors or common simple mistakes, if there is

at least one FLOSS tool that can implement this criterion in the

selected language. [warnings]

43

Criteria categories and examples (3)

5. Security
 At least one of the primary developers MUST know of common

kinds of errors that lead to vulnerabilities in this kind of

software, as well as at least one method to counter or mitigate

each of them. [know_common_errors]

 The project's cryptographic software MUST use only

cryptographic protocols and algorithms that are publicly

published and reviewed by experts. [crypto_published]

 The project MUST use a delivery mechanism that counters

MITM attacks. Using https or ssh+scp is acceptable.

[delivery_mitm]

 There MUST be no unpatched vulnerabilities of medium or

high severity that have been publicly known for more than 60

days. [vulnerabilities_fixed_60_days]

44

Criteria categories and examples (4)

6. Analysis
 At least one static code analysis tool MUST be applied to any

proposed major production release of the software before its

release, if there is at least one FLOSS tool that implements this

criterion in the selected language… [static_analysis]

 It is SUGGESTED that the {static code analysis} tool include

rules or approaches to look for common vulnerabilities in the

analyzed language or environment.

[static_analysis_common_vulnerabilities]

 It is SUGGESTED that at least one dynamic analysis tool be

applied to any proposed major production release of the

software before its release. [dynamic_analysis]

45

Badge criteria must NOT be…

 Will NOT require any specific products or

services (especially proprietary ones)

 We intentionally don’t require git or GitHub

 That said, will automate many things if project

does use GitHub

 Will NOT require or forbid any particular

programming language

46

