Open Source Summit Japan 2019

Using Open Source Software to Build an Industrial-grade Embedded Linux Platform from Scratch

SZ Lin (林上智)

Embedded Linux Development Center, Software R&D Engineer 07/19, 2019

About Me

SZ LIN (林上智)

- Software Engineer at Moxa
- Cybersecurity Fundamentals Specialist
 - ISA/ IEC 62443
- Debian Developer
- Blog https://szlin.me

Industrial Embedded Linux Platforms

Before Using Open Source Software

Something You Should Know

Copyright

Copyright is a legal right, that grants the creator of an original work exclusive rights to determine whether, and under what conditions, this original work may be used by others

src: https://en.wikipedia.org/wiki/Copyright

Patent

A patent gives its owner the right to exclude others from making, using, selling, and importing an invention for a limited period of time, usually twenty years.

src: https://en.wikipedia.org/wiki/Patent

Copyright

Identify key recommended processes for effective open source management [1]. Patent

openinventionnetwork

It is a shared defensive patent pool with the mission to protect Linux [2].

Processes, Tooling and Support

OpenChain

Trust between entities in the supply chain

The OpenChain Project builds trust in open source by making open source license compliance simpler and more consistent

SPDX [3]

Trust for software packages

Software Package Data Exchange (SPDX) is a file format used to document information on the software licenses under which a given piece of computer software is distributed.

FOSSology [4]

Free scanning technology

FOSSology is a open source license compliance software system and toolkit

Industrial/ Harsh Environments

Including smart rail, smart grid, intelligent transportation, factory automation, oil & gas, marine, and more

EN50155

EC 61850-3

Target Application

Target Application

Lifecycle of Industrial-grade Embedded Linux Platform

Development Phase

Design and development according to application

Choose Proper Bootloader

Category	License	Supported Platforms	Supported UEFI	Maintainer
Das U-Boot ^[5]	GPL-2+	68k, ARM, Blackfin, MicroBlaze, MIPS, Nios, SuperH, PPC, RISC-V, x86 (on top of Coreboot)	Y	DENX Software Engineering
Coreboot [6]	GPL-2	IA-32, x86-64, ARMv7, ARMv8, MIPS, RISC-V, POWER8	Y	coreboot.org
GRUB	GPL-3	IA-32, x86-64, IA-64, ARM, PowerPC, MIPS and SPARC	Y	GNU Project
rEFInd [9]	GNU GPLv3, Modified BSD License (original program), additional components released under various licenses	x86, x86-64, or ARM64	Y	Roderick W. Smith

Kernel Space

Choose Proper Kernel

Based on the application requirement

Linux Kernel Comparison Table

Category	Latest version	Target Application	Maintainer
Linux kernel	5.2	 Performance Resource Limited [12] [13] 	Kernel.org
Preempt RT kernel	5.2	Real-timeFunctional safetyResource Limited	Real Time Linux collaborative project

*Real-time application [14][15]

SoC Board Support Package Kernel

- Kernel version depends on SoC vendors
 - Well made but not well maintained
- Contain lots of in-house patches
 - Errata patches
 - Specific feature patches
 - ...
- Different SoC might use different versions of kernel
- The lifetime is unsure

LTS: Long Term Stable Kernel [16]

Longterm release kernels

Version	Maintainer	Released	Projected EOL
4.19	Greg Kroah-Hartman	2018-10-22	Dec, 2020
4.14	Greg Kroah-Hartman	2017-11-12	Jan, 2020
4.9	Greg Kroah-Hartman	2016-12-11	Jan, 2023
4.4	Greg Kroah-Hartman	2016-01-10	Feb, 2022
3.16	Ben Hutchings	2014-08-03	Apr, 2020

Extend software uptime for stable kernel

Only accept bug fixes and security fixes

img: https://www.kernel.org/category/releases.html

LTSI: Long Term Support Initiative [17]

tsi

Home Community Software Related Projects Documentation

- Linux Foundation collaborative project
 - Based on LTS
 - Add another chance to include further patches on top of LTS
 - Auto Test framework
 - Same lifetime with LTS (yearly release and 2 years life time)

CIP (Civil Infrastructure Platform) [19]

CIVIL INFRASTRUCTURE PLATFORM

Establishing an open source base layer of industrial grade software to enable the use and implementation of software building blocks for civil infrastructure

- Linux Foundation collaborative project
 - Support kernel and core package
 - Auto Test framework
 - Maintenance period
 - 10 years and more (10-20 years)

img: https://wiki.linuxfoundation.org/civilinfrastructureplatform/cipconferences

24

Linux Kernel Source Comparison Table

Version	Maintenance Period (years)	Features	Latest Version	Supported Realtime kernel	Maintainer
SoC BSP kernel	?	Bug fixes	?	Ν	SoC vendor kernel team
LTS kernel	2 ~ ?	Bug fixesSecurity fixes	4.19	Ν	Kernel.org
LTSI kernel	2 ~ ?	 Bug fixes Security fixes Specific features New features 	4.14	Ν	LTSI
CIP kernel	10 +	 Bug fixes Security fixes Specific features New features 	4.19	Y	CIP

Longevity + Stability + Security

Mutually Exclusive ?

Performance	Real-time	Resource Limited	Safety

Multiple Kernel In Single Platform

To fulfill multiple user scenarios

FIT (Flattened Image Tree) (A case of ARM-based architecture)

- Tree data structure
- Handle multiple types of image
 - kernel : kernel image
 - fdt : dtb file
 - ramdisk : root file system
- Image hashing
 - md5
 - sha1
- Image signing
- Each node in configurations has their image configuration in booting stage

/dts-v1/;

```
{
      description = "Image file for the LS1043A Linux Kernel";
      #address-cells = <1>;
      images {
               kernel@1 {
                       description = "ARM64 Linux kernel";
                       data = /incbin/("./arch/arm64/boot/Image.gz");
                       type = "kernel";
                       arch = "arm64";
                       os = "linux";
                       compression = "gzip";
                       1 \circ ad = \langle 0x80080000 \rangle;
                       entry = <0x80080000>;
              };
fdt@1 {
                       description = "Flattened Device Tree blob";
                       data = /incbin/("./arch/arm64/boot/dts/freescale/fsl-ls1043a-rdb.dtb");
                       type = "flat_dt";
                       arch = "arm64";
                       compression = "none";
                       1oad = \langle 0x90000000 \rangle;
               };
      };
      configurations {
               default = "config@1";
               config@1 {
                       description = "Boot Linux kernel";
                       kernel = "kernel@1";
                       fdt = "fdt@1";
               };
      };
```

More info.:

http://git.denx.de/?p=uboot.git;a=blob_plain;f=doc/uImage.FIT/source_file_format.txt;hb=HEAD

User Space

ELISA: Safety-Critical Systems [20]

THELINUX FOUNDATION PROJECT

Home Community Contact News O

Advancing Open Source Safety-Critical Systems

The mission of the Enabling Linux In Safety Applications (ELISA) project is to make it easier for companies to build and certify Linux-based safety-critical applications – systems whose failure could result in loss of human life, significant property damage or environmental damage. ELISA members are working together to define and maintain a common set of tools and processes that can help companies demonstrate that a Linux-based system meets the necessary safety requirements for certification.

- Linux Foundation collaborative project
 - Build and certify Linux-based safety-critical applications
 - Define and maintain a common set of tools and processes
 - SIL2LinuxMP [21] project and the Linux Foundation's Real-Time Linux project
 - IEC 61508

Choose Proper C Library and Toolchain

C Library and Toolchain Comparison Table

Category	License	Features	Target Application	Maintainer User
glibc [25]	LGPL 2.1	 Stable ABI Backward compatibility Fully symbol versioning Stack smashing protection/ heap corruption detection Profiling 	PerformanceSecurity	GNU
uClibc-ng	LGPL 2.1	 No-MMU architecture support Tiny size 	Resource Limited	uclibc-ng.org
Musi [28]	MIT	 Stable ABI Backward compatibility Stack smashing protection/ heap corruption detection 	 Resource Limited Security 	musl-libc.org

Other option [93]

* Be aware of year 2038 problem [29]

Year 2038 Problem [92]

Binary : 01111111 1111111 11111111 11110000 Decimal : 2147483632 Date : 2038-01-19 03:13:52 (UTC) Date : 2038-01-19 03:13:52 (UTC)

- The time_t datatype is a data type in the ISO C library and kernel structure defined for storing system time values.
- 32-bit system can represent dates from
 - Dec 13 1901
 - Jan 19th 2038
- It causes integer overflowing on 03:14:08 UTC 19 January 2038

Init System

Init System Comparison Table

Category	License	C Library	User	Note
busybox	GPL 2.0	uClinux-ng Glibc musl	ProteanOS PiBox	Resource- limited application
sysvinit	GPL 2.0+	uClinux-ng glibc musl	Devuan	
systemd	LGPL 2.1+	glibc	Arch, CentOS, CoreOS, Debian, Fedora, Mint, OpenSUSE, Redhat, Ubuntu	Linux only
openrc	2-clause BSD	musl glibc	Gentoo Alpine Linux	
upstart	GPL 2.0	glibc	Chromium OS	Linux only

Choose proper RFS (Root filesystem)

Stable root filesystem

Root filesystem Comparison Table

Category	Maintenance Period (years)	Number of packages	C Library	Security Tracker	CI
Busybox	?	300 ~ 400 applets	uClibcglibc	?	?
Yocto	Latest release the previous two releases	It depends on meta-*	glibcmusl	Y	Y
Buildroot	1	2000+ [42]	glibcmusluClibc-ng	Y	Y
Debian	3 + 2 (i386, amd64, armel, armhf and arm64)	51000+	glibcmusl	Y	Y

System Development Tools

System Development Tools Comparison Table

Root filesystem	System Development Tools	Toolchain	System Development Tools License
Busybox	Yocto	OE-Core	MIT
Yocto	Yocto	OE-Core	MIT
Buildroot	Buildroot	Buildroot	GPL 2.0+
	ISAR	Debian toolchain	Metadata: MIT Others: GPL 2.0
Debian	ELBE	Debian toolchain	GPL 3.0+
Depian	Yocto Deby (meta- debian)	OE-Core	MIT
	Live-build	Debian toolchain	GPL 3.0+

Why We Choose Debian [49]

Scalability

Server, Desktop,

Laptop, Embedded devices

$\begin{array}{c} Stability \\ \text{unstable} \rightarrow \text{testing} \rightarrow \text{stable} \end{array}$

Everything is open Usually, fixed packages are uploaded within a few days

Long term support

5 more years by Debian-LTS project (i386, amd64, armel, armhf and arm64)

Multiple architectures

alpha, amd64, armel, armhf, aarch64, hppa, i386, ia64, mips, mipsel, powerpc, s390, and spar

Incredible amounts of software

Debian comes with over 51000 different pieces of software with free

debian

More info: Building, Deploying and Testing an Industrial Linux Platform Open Source Summit Japan 2017 [51]

ΜΟΧΛ

CI/ CD Automatic Release Pipeline

CI/ CD Automatic Release Pipeline

Static Program Analysis ✓ Coding style ✓ OWASP [52] ✓ Infer [53] ✓ Sonarqube [54] **√** ... - Infer mage Proview (b) | View Al (b) on these combined results. This plugin requires the utility plugin "analysiscore" (called "Static Analysis Utilities" in the A tool to detect bugs in Java and tions (thanks to PerTang Huang C/C++/Objective-Č code before it ships Infer is a static analysis tool - if you give Infer some Java or C/C++/Objective-C code it produces a list of potential bugs. Anyone Protocy usobalisation Progent missip Protection (1): Ver Al cit. Ferth CoundScan Plagm This plages provides easy configuration of HP Forthy CloudScan jobs. This plagin has been within for and relaxed against Forthy CloudBitan 16x Description Forthy CloudBitan allows an organization to host their own internal cloudbased infrastructure of Static Code Analyzer (SCA) machines. can use Infer to intercept critical bugs before they have shipped to users, and help prevent crashes or poor performance. GET STARTED TRY INFER IN YOUR BROWSER FEATURES DOWNLOADS ROADMAR COMMUNITY ditte Passed een()); O Garren

Static Testing Cases Management -Jenkins

Image: https://c1.staticflickr.com/5/4030/4438139050_04604b4908.jpg

Distributed Compiler

Software

- Icecream/ IceCC was created by SUSE based on distcc [55][56]
 - Improve performance of compile jobs in parallel
 - Add dynamic scheduler of the compilation jobs
 - Support multiple platform
 - Support cross compiling

Hardware - for each node

- SSD
- Large capacity memory
- Gigabit LAN

CI/ CD Automatic Release Pipeline

Continuous Delivery – LAVA [57][58]

Q LAVA 2019.05.post1+stretch Index Contents Page - Contents »

Search

Introduction to LAVA

Navigation

Use the navigation bar at the top of each page to quickly navigate between sections of the documentation; Index, Contents, Page and Next.

Index

The Help Index is often the quickest way to find specific sections of the documentation.

Contents

If you are new to LAVA, the Help Contents describes several useful starting points, depending on how you expect to use LAVA.

Page indices

Each page also has a Page menu for topics within the page as well as forward and back navigation to lead readers through in a logical manner.

The architecture has been significantly improved since V1, bringing major changes in terms of how a distributed LAVA instance is installed, configured and used for running test jobs.

About LAVA V2

LAVA V2 is the second major version of LAVA. The major user-visible features are:

- · The Pipeline model for the dispatcher
- YAML job submissions
- Results
- Queries
- Charts
- Data export APIs

QAVA

Fuego Fuego Wiki Download Read the docs

- Test framework for testing embedded Linux
 - Official automated test framework for the LTSI project.
 - BSD 3-Clause license in default

- Over 100 pre-packaged tests
- Ability for 3rd parties to initiate or schedule tests on our hardware, and the ability to share our test results with others.

Maintenance Phase

Long-term Testing and Regular Update

More info: Building, Deploying and Testing an Industrial Linux Platform Open Source Summit Japan 2017 [51]

* Test cases are managed by test framework

MOXV

For Stable Kernel Maintenance

KernelCI

- Automated Linux Kernel Testing [73][74]
 - Detect, bisect, report and fix regressions on upstream Kernel trees before release
 - Short tests on many configurations

Reproducible Builds [75]

Reproducible Builds

- Create an independently-verifiable path from source to binary
 - Ensure builds have identical results
 - Act as part of a chain of trust
 - Prove the source code has not been tampered/modified

Open Source Testing Tools

Continuous Integration	 Jenkins [78] Jenkins X [79]
Continuous Delivery/ Deployment	• LAVA 2 [57]
Distributed compiler service	 icecc [55] GOMA [80][81] distcc [82]
Test Case Management	 Jenkins LAVA 2 Fuego [68][69]
Version Control	Git with gitlab [83]
Static Program Analysis	 Coding style OWASP [52] Infer [53] Sonarqube [54]
Dynamic Program Analysis	 Gcov [59] Valgrind [60] Profiling tools [61]
Security Testing	 OpenVAS [63] Vuls [84]
Fuzzing Testing	 Syzkaller [64] Trinity [65] OSS-fuzz [66]

CI/ CD/ LT are concepts of software engineering instead of tools or procedures

Why We Need Software Update?

Over 10+ years

The Components Might Be Updated

Components	Size	Update frequency	Risk
Peripheral devices firmware	< 10 MB	Rarely	Mid
Bootloader (including SPL)	< 1 MB	Rarely	High
Device tree	<100 kB	Rarely	High
Linux kernel	< 10 MB	Regularly	High
Root file system	Variant	Regularly	High
System configuration	< 1 MB	Rarely	Low
Application	Variant	Often	Low

Characteristics of Industrial Embedded Linux Platform

Harsh environment

Unreliable network and power supply

Middle of nowhere

Human-less warehouse or site

Bandwidth limited

Wireless focus

Multiple version supported

Rollback version

Multiple devices

Remote management

Longevity

Long-term support at least 10 years life cycle

The Media for Software Update

Software Update Requirements

Basic Features	
Fail-safe	
Roll-back	
Size reduction	
Signatures	
Multiple storage type support (e.g., NOR/NAND flash, eMMC)	
Build system integration	
Remote access (e.g., OTA)	
Additional Features	
Online and offline updates	
Encryption	
Delta-updates	
Successful update detection	
Proactive updating	

Update Approaches

Components	Size	Complexity	Time Cost
Image/ block based	Large	Low	Very High
File based	Variant	Low	Variant
Package based (e.g., deb, rpm)	Variant	Low	Variant
Delta based	Low	Very High	Low

Asymmetric/ Symmetric Firmware Updates [85]

User Data/ Configuration

Recovery OS

Main OS

Bootloader/ Firmware

Asymmetric Firmware Updates

- Fail-safe
- Downtime

User Data/ Configuration

Main OS – A (Active)

Main OS – B (Inactive)

Bootloader/ Firmware

Symmetric Firmware Updates

- Seamless update
- Roll-back
- Fail-safe
- Double copy of OS

Comparison - Features

Category	Fail- Safe	Roll- Back	Delta- Updates	Signatures	Multiple Storage Type Support	Build System Integration
SWUpdate	Y	Y	librsync	Y	•NOR NAND flashes •UBI volumes •SD / eMMC	Yocto/ Buildroot
RAUC	Y	Y	casync	Y	•NOR NAND flashes •UBI volumes •SD / eMMC	Yocto/ Buildroot
OSTree	Ν	Y	archive- z2	Y	?	Yocto

Comparison - Others

Method	Asymmetric/ Symmetric Image Updates	Туре	Language	License
SWUpdate	Both	Image-based File-based	C99	GPLv2 With openssl exception
RAUC	Both	Image-based File-based	С	LGPLv2.1
OSTree	Asymmetric	File-based	C/C++	MPL 2.0 /LGPLv2+

Conclusion

Preparedness Planning

Longevity, stability and security

Community Collaboration

Different approach for multiple target applications

Thank You

© Moxa Inc. All rights reserved.

- [1] https://www.openchainproject.org
- [2] https://www.openinventionnetwork.com/
- [3] <u>https://spdx.org/</u>
- [4] https://www.fossology.org/
- [5] https://en.wikipedia.org/wiki/Das_U-Boot
- [6] https://en.wikipedia.org/wiki/Coreboot
- [7] https://en.wikipedia.org/wiki/Booting#Modern_boot_loaders
- [8] http://www.rodsbooks.com/refind/
- [9] https://en.wikipedia.org/wiki/REFInd
- [10] https://www.kernel.org
- [11] https://wiki.linuxfoundation.org/realtime/start
- [12] https://tiny.wiki.kernel.org/start
- [13] <u>https://bootlin.com/pub/conferences/2017/jdll/opdenacker-embedded-linux-in-less-than-4mb-of-ram/opdenacker-embedded-linux-in-less-than-4mb-of-ram.pdf</u>
- [14] https://xenomai.org/
- [15] https://www.rtai.org/

- [16] https://www.kernel.org/category/releases.html
- [17] https://ltsi.linuxfoundation.org/
- [18] <u>https://events.linuxfoundation.org/wp-content/uploads/2017/11/Using-</u> Linux-for-Long-Term-Community-Status-and-the-Way-We-Go-OSS-Tsugikazu-Shibata.pdf
- [19] https://www.cip-project.org/
- [20] https://elisa.tech/
- [21] http://www.osadl.org/SIL2LinuxMP.sil2-linux-project.0.html
- [22] https://wiki.linuxfoundation.org/gsoc/2019-gsoc-safety-critical-Linux
- [23] https://lists.elisa.tech/login?r=%2Ftopics
- [24] https://events.static.linuxfound.org/sites/events/files/slides/libc-talk.pdf
- [25] https://www.gnu.org/software/libc/
- [26] https://uclibc-ng.org/
- [27] http://events.linuxfoundation.org/sites/events/files/slides/uclibc-stillmakes-sense-brodkin-elce2017.pdf
- [28] https://www.musl-libc.org/
- [29] https://en.wikipedia.org/wiki/Year_2038_problem

- [30] https://en.wikipedia.org/wiki/Linux_startup_process
- [31] http://upstart.ubuntu.com/faq.html
- [32] https://en.wikipedia.org/wiki/Systemd
- [33] https://sysdfree.wordpress.com/2019/03/09/135/
- [34] https://wiki.gentoo.org/wiki/Comparison_of_init_systems
- [35] https://elinux.org/images/6/69/Demystifying_Systemd.pdf
- [36] http://proteanos.com/
- [37] https://www.piboxproject.com/
- [38] https://lists.debian.org/debian-devel/2016/02/msg00122.html
- [39] https://busybox.net/FAQ.html#libc
- [40] <u>https://wiki.yoctoproject.org/wiki/Stable_branch_maintenance</u>
- [41] <u>https://www.debian.org/social_contract#guidelines</u>
- [42] <u>https://bootlin.com/pub/conferences/2018/elc/petazzoni-buildroot-whats-new/petazzoni-buildroot-whats-new.pdf</u>

[43] <u>https://events.static.linuxfound.org/sites/events/files/slides/libc-talk.pdf</u> [44]

http://events17.linuxfoundation.org/sites/events/files/slides/ELC%202016%20-%20Designing%20a%20distro%20from%20scratch%20using%20OpenEmbedd ed.pdf

[45] https://github.com/meta-debian/meta-debian

[46] <u>https://events.linuxfoundation.org/wp-</u> content/uploads/2017/12/ELCE2018_Debian-Yocto-State-of-the-Art r6 Kazuhiro-Hayashi.pdf

[47] https://events.linuxfoundation.org/wp-content/uploads/2017/12/Buildrootvs-Yocto-Differences-for-Your-Daily-Job-Luca-Ceresoli-AIM-Sportline.pdf

[48] <u>https://events.static.linuxfound.org/sites/events/files/slides/belloni-</u>petazzoni-buildroot-oe_0.pdf

[49] https://www.debian.org/intro/why_debian.en.html

[50] https://www.debian.org/security/index.en.html

[51] http://events.linuxfoundation.org/sites/events/files/slides/Build ing%2C%20Deploying%20and%20Testing%20an%20Industrial%20Linux% 20Platform.pdf

- [52] https://wiki.jenkins-ci.org/display/JENKINS/Plugins
- [53] http://fbinfer.com/
- [54] https://www.sonarqube.org/
- [55] https://github.com/icecc
- [56] https://www.slideshare.net/szlin/distributed-compiler-icecc
- [57] https://validation.linaro.org/static/docs/v2/#
- [58] http://elinux.org/images/3/35/LAVA_Project_Update.pdf
- [59] https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
- [60] http://valgrind.org/
- [61] https://perf.wiki.kernel.org/index.php/Main_Page
- [62] http://linux-test-project.github.io/
- [63] http://www.openvas.org/
- [64] https://github.com/google/syzkaller
- [65] http://codemonkey.org.uk/projects/trinity/
- [66] https://github.com/google/oss-fuzz
- [67] https://kselftest.wiki.kernel.org

- [68] https://elinux.org/Fuego
- [69] http://fuegotest.org/
- [70] https://elinux.org/Automated_Testing_Summit_2019
- [71] <u>https://en.wikipedia.org/wiki/Robustness_(computer_science)</u>
- [72] https://en.wikipedia.org/wiki/Reliability,_availability_and_serviceability
- [73] https://kernelci.org/
- [74]
 - https://fosdem.org/2019/schedule/event/kernelci_a_new_dawn/attachment s/slides/3300/export/events/attachments/kernelci_a_new_dawn/slides/3300/ /gtucker_kernelci_fosdem_2019_v2_3_1024x768.pdf
- [75] https://reproducible-builds.org/
- [76] http://layer-acht.org/slides/2019-06-08-MiniDebConf-Hamburg--aiming-forbullseye/#/7
- [77] https://wiki.debian.org/ReproducibleBuilds
- [78] https://jenkins.io
- [79] https://jenkins.io/projects/jenkins-x/
- [80] https://chromium.googlesource.com/infra/goma/server/
- [81] https://chromium.googlesource.com/infra/goma/client

- [82] https://github.com/distcc/distcc
- [83] https://about.gitlab.com/
- [84] https://vuls.io/
- [85] https://mkrak.org/wp-content/uploads/2018/04/FOSS-NORTH_2018_Software_Updates.pdf
- [86] https://events.linuxfoundation.org/wp-content/uploads/2017/12/Strategies-for-Developing-and-Deploying-your-Embedded-Applications-and-Images-Mirza-Krak-Mender.io_.pdf
- [87]
 - http://events17.linuxfoundation.org/sites/events/files/slides/ELC2017_SWUpdate.p
- [88] https://events.linuxfoundation.org/wp-content/uploads/2017/12/ELCE-2018-Update-Tools-BoF_Jan-Lubbe.pdf
- [89] https://events.linuxfoundation.org/wp-content/uploads/2017/12/ELCE-2018-Update-Tools-BoF_Jan-Lubbe.pdf
- [90] <u>https://elinux.org/images/f/f5/Embedded_Systems_Software_Update_for_IoT.pdf</u>
- [91] https://rauc.readthedocs.io/en/latest/
- [92] http://elinux.org/images/6/6e/End_of_Time_--_Embedded_Linux_Conference_2015.pdf
- [93] https://android.googlesource.com/platform/bionic

