
Uptane
Securing Over-the-Air Updates
Against Nation State Actors

Justin Cappos
New York University

uptane.github.io

What do these companies have in
common?

What do these companies have in
common?

Users attacked via software
updater!

Software repository compromise
impact

• SourceForge mirror distributed malware.
• Attackers impersonate Microsoft

Windows Update to spread Flame
malware.

• Attacks on software updaters have
massive impact
• E.g. South Korea faced 765 million dollars in

damages.
• NotPetya spread via software updates!

https://sourceforge.net/blog/phpmyadmin-back-door/
https://www.trailofbits.com/resources/flame-md5.pdf

The modern automobile
Exhaust

Engine Control Unit

TCU

Transmission

Brake LineABS

Airbag Control Unit

Body Controller
Locks/Lights/Etc

Radio

 Telematics _

Internet/
PSTN

HVAC

Keyless
Entry

Anti-Theft

5

◼ Researchers have made some scary attacks against vehicles

▪ remotely controlling a car's brakes and steering while it's driving

▪ spontaneously applying the parking brake at speed

▪ turning off the transmission

▪ locking driver in the car

Cars are multi-ton, fast-moving weapons

People will die

Cars Are Dangerous

Updates Are Inevitable

◼ Millions of lines of code means bugs
◼ Regulations change -> firmware must change
◼ Maps change
◼ Add new features
◼ Close security holes
◼ Cars move across borders…

Updates Must Be Practical

◼ Updating software/firmware has often meant recalls.

◼ Recalls are extremely expensive

▪ GM spent $4.1 billion on recalls in 2014

▪ GM's net income for 2014 was < $4 billion

▪ People do not like recalls.

◼ Updates must be over the air.

◼ Update -> Control

Updates Are Dangerous

◼ Nation-state actors pull off complex attacks

▪ Must not have a single point of failure

Secure Updates

What to do?

Must update to fix security issues

Insecure update mechanism is a new security problem

“...No one Can Hack My Mind”:
Comparing Expert and
Non-Expert Security Practices
Ion, et al. SOUPS 2015

Security Defense Types

Must update to fix security issues

Insecure update mechanism is a new security problem

“...No one Can Hack My Mind”:
Comparing Expert and
Non-Expert Security Practices
Ion, et al. SOUPS 2015

What are some of the attacks?

Attacks

Arbitrary software attack
Repository

Is there an update?

Here is an update...

ECU-1
v.10 ECU-1

v.12

14

ECU-1
v.Evil

Freeze attack

Is there an update?

Same old, same old!

ECU-1
v10 ECU-1

v12

Repository

15

ECU-1
v10

Rollback attack

Is there an update?

Here is an update

ECU-1
v10

ECU-1
v1

ECU-1
v12

Repository

16

Slow retrieval attack

Is there an update?

Y … e … a … h … …

ECU-1
v10 ECU-1

v12

Repository

17

Mix and Match attacks

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

18

ECU-2
v12

ECU-1
v11

Partial Bundle attack

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

19

ECU-2
v12

ECU-1
v12

No, ty

Partial Freeze attack

Is there an update?

Here is an update

ECU-1
v10

ECU-2
v10

Bundle-2

ECU-1
v12

ECU-2
v12

Repository

20

ECU-2
v12

ECU-1
v12

How to address security concerns

● Prevent
○ Make it harder for a compromise to occur

● Detect
○ Detect incidents of compromise quickly

● Transfer Risk
○ Have insurance or claim regulations were followed

● Mitigate
○ Make a successful compromise less impactful

How to address security concerns

● Prevent
○ Make it harder for a compromise to occur

● Detect
○ Detect incidents of compromise quickly

● Transfer Risk
○ Have insurance or claim regulations were followed

● Mitigate
○ Make a successful compromise less impactful

Most automotive
technologies

How to address security concerns

● Prevent
○ Make it harder for a compromise to occur

● Detect
○ Detect incidents of compromise quickly

● Transfer Risk
○ Have insurance or claim regulations were followed

● Mitigate
○ Make a successful compromise less impactful

Most automotive
technologies

~100Ms USD lawsuit,
likely unachievable

How to address security concerns

● Prevent
○ Make it harder for a compromise to occur

● Detect
○ Detect incidents of compromise quickly

● Transfer Risk
○ Have insurance or claim regulations were followed

● Mitigate
○ Make a successful compromise less impactful

Most automotive
technologies

~100Ms USD lawsuit,
likely unachievable

Major Uptane value
add

How to address security concerns

● Prevent
○ Make it harder for a compromise to occur

● Detect
○ Detect incidents of compromise quickly

● Transfer Risk
○ Have insurance or claim regulations were followed

● Mitigate
○ Make a successful compromise less impactful

Most automotive
technologies

~100Ms USD lawsuit,
likely unachievable

Major Uptane value
add

OMA-DM, ITU-T X.1373, etc.
enable full control with a
single compromise

Update Basics

Repository

Clientxyz.tgz, pls

xyz.tgz

Inadequate Update Security 1: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Traditional solution 1:

Authenticate the repository (TLS, SSL, etc)

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ

Inadequate Update Security 2: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Transport Layer Security: Problem 1

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ
Client has to trust all of these
Certificate Authorities

Inadequate Update Security 3: TLS/SSL

Repository

Clientxyz.tgz, pls

xyz.tgz

Transport Layer Security: Problem 2

Certificate
Authority

Key XYZ
speaks for
domain
repo.net

XYZ
Client has to trust this key.

… which HAS to exist ON the repository, to
sign communications continuously.

Client has to trust this key

Inadequate Update Security 4: Just Sign!

Repository

Clientxyz.tgz, pls

xyz.tgz

Traditional Solution 2:
Sign your update package with a specific key.
Updater ships with corresponding public key.

XYZ

… used for every update to the repository.

… key ends up on repo or build farm.

If an attacker gains the use of this key, they
can install arbitrary code on any client.

Update Security

Repository

Clientxyz.tgz, pls

xyz.tgz

We need:
● To survive server compromise with the

minimum possible damage.
○ Avoid arbitrary package attacks

● Minimize damage of a single key being
exposed

● Be able to revoke keys, maintaining trust
● Guarantee freshness to avoid freeze attacks
● Prevent mix and match attacks
● Prevent rollback attacks
● Prevent slow retrieval attacks
● ...

Must not have single point of failure!

Widely used in industry:

The Update Framework (TUF)

Linux Foundation CNCF project

TUF goal “Compromise Resilience”

● TUF secures software update files
● TUF emerges from a serious threat model:

○ We do NOT assume that your servers are perfectly secure
○ Servers will be compromised
○ Keys will be stolen or used by attackers
○ TUF tries to minimize the impact of every compromise

The Update Framework (TUF): Goals

Responsibility Separation

timeliness

Root of trust

content consistency

34

The Update Framework (TUF)

TUF Roles Overview

Timestamps

(timeliness)

Root

(root of trust)

Snapshot

(consistency)

Targets

(integrity)
35

The Update Framework (TUF)

Design principles for a repository

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.
4. Minimized risk through use of offline keys.

36

Separation of duties

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.

○ Sign different types of metadata using different keys.
○ Metadata about images (self-contained archives of code+data

for ECUs), or other metadata files.

37

Threshold signatures

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.

38

¾

Explicit & implicit revocation of keys

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.

39

Minimizing risk with offline keys

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

snapshot targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Design principles:
1. Separation of duties.
2. Threshold signatures.
3. Explicit and implicit revocation of keys.
4. Minimized risk through use of offline keys.

40

The modern automobile
Exhaust

Engine Control Unit

TCU

Transmission

Brake LineABS

Airbag Control Unit

Body Controller
Locks/Lights/Etc

Radio

 Telematics _

Internet/
PSTN

HVAC

Keyless
Entry

Anti-Theft

41

Automobiles present particular difficulties.

● Timeserver

● Multiple Repositories: Director and Image Repository

● Manifests

● Primary and Secondary clients

● Full and Partial verification

Uptane builds on The Update Framework (TUF)

Background

● Repository contains images +
metadata

● Image
○ A unit of update
○ An archive of code + data for an ECU
○ One image per ECU

● Metadata
○ Information such as cryptographic hashes

and file sizes
○ About images, or other metadata files

43

Image

Metadata

Signing all metadata with an online key

● Use a single online key to sign all metadata (e.g., using SSL / TLS)
● Protects ECUs from man-in-the-middle attacks between repository and vehicle
● Allows on-demand customization of updates for vehicles

44

Repository Vehicle

The problem with an online key

● Doesn’t say anything about the security of the server: just that you are talking to it
● Single point of failure: easy to compromise
● If repository is compromised, attacker can install malware and control vehicles

45

Repository Vehicle

Attacker

Signing all metadata with an offline key

46

● Use a single offline key to sign all metadata (e.g., using GPG or RSA)
● Compromise-resilient, because attackers cannot tamper with metadata without

being detected

Repository Vehicle

Attacker

The problem with an offline key

47

● Difficult to customize updates on-demand for vehicles
○ Difficult to install different updates on vehicles of the same make and model, but with different

requirements

○ Cannot instantly blacklist only buggy updates

● In practice, this risks becoming the previous system (online key)

Repository

Test
vehicle

Attacker

Military
vehicle

“...install this…”

“...install that...”

(same make and model)

Takeaway: either-or

● Previous security systems force
repositories to choose either on-demand
customization of vehicles, or
compromise-resilience.

48

Avoiding either-or
security choices

49

Key idea

● What if there are two repositories?

50

OEMVehicle

offline
keys

online
keys

ECU

Key idea

● What if there are two repositories?
● Image repository

○ Uses offline keys
○ Provides signed metadata about all

available updates for all ECUs on all
vehicles

51

OEMVehicle

offline
keys

Image
repository

online
keys

ECU

Key idea

● What if there are two repositories?
● Image repository

○ Uses offline keys
○ Provides signed metadata about all

available updates for all ECUs on all
vehicles

● Director repository
○ Uses online keys
○ Signs metadata about which updates

should be installed on which ECUs on a
vehicle

52

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director

repository

Key idea

● A vehicle would ensure that
installation instructions from the
director repository matches
updates from the image
repository.

● Using both repositories provides
both on-demand customization
of vehicles &
compromise-resilience.

53

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director

repository

The image repository

targets

A

snapshottimestamp

A*
.im

g

root

OEM-managed supplier-managed

Metadata

B

C
D

E

B*.img

C*.img

CA*.img

CB*.img

signs metadata for

signs root keys for

delegates images to
signs for images

● When possible, OEM
delegates updates for
ECUs to suppliers.

● Delegations are flexible,
and accommodate a
variety of arrangements.

A1.img

B3.img

CA5.img

CB2.img

54

The image repository

targets

A

snapshottimestamp

A*
.im

g

root

OEM-managed supplier-managed

Metadata

B

C
D

E

B*.img

C*.img

CA*.img

CB*.img

signs metadata for

signs root keys for

delegates images to
signs for images

● When possible, OEM
delegates updates for
ECUs to suppliers.

● Delegations are flexible,
and accommodate a
variety of arrangements.

A1.img

B3.img

CA5.img

CB2.img

55

The image repository

targets

A

snapshottimestamp

A*
.im

g

root

OEM-managed supplier-managed

Metadata

B

C
D

E

B*.img

C*.img

CA*.img

CB*.img

signs metadata for

signs root keys for

delegates images to
signs for images

● When possible, OEM
delegates updates for
ECUs to suppliers.

● Delegations are flexible,
and accommodate a
variety of arrangements.

A1.img

B3.img

CA5.img

CB2.img

56

The director repository

targetssnapshottimestamp

root

Inventory
database

OEM-managed

Metadata

signs metadata for

signs root keys for

delegates images to
signs for images

consults

● Lets OEM control which
updates are installed on
which vehicles.

● Signs metadata about what
images should be installed.

● Consults an inventory
database to find out which
ECUs are on a vehicle.

● Can also blacklist versions.
● Could additionally / also be

run by fleet management or
dealerships

57

Takeaway: security & flexibility

● Uptane provides both
on-demand customization of
vehicles &
compromise-resilience.

● Gives an OEM a powerful array of
options in controlling how
updates are chosen for a vehicle,
and who signs for updates.

58

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director

repository

Verifying metadata &
images on vehicles

59

Primaries and secondaries

● Three types of ECUs,
because:
○ Some ECUs are more /

less powerful than others.
○ Few ECUs have network

connection to outside
world.

○ ECUs should not
download metadata
independently of each
other.

60

Primaries

● A primary downloads,
verifies, distributes
metadata + images to
secondaries.

61

Partial / Full Verification Secondaries

● A secondary verifies
both the metadata &
image distributed by a
primary, before
updating to that
image.

62

Full verification secondaries

● Checking that metadata about
updates chosen by the director
repository matches metadata about
the same updates on the image
repository.

● Involves checking ~3-6 signatures on
metadata files

63

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director

repository

Partial verification secondaries

● Checking only metadata
from the director
repository.

● Involves checking only one
signature on one metadata
file.

64

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director

repository

Uptane: Client-side Basics

Primary
Client

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary
Secondary

Secondary

Secondary

Cell
Network

Uptane: High level view

Image
Repository
(Section 5)

Director
Repository
(Section 6)

Director

Full Verification
(FV) Secondary

Partial
Verification

(PV)
Secondary

Primary
ECU

Time Server
(Section 7)

Inventory
Database

Vehicle
(Section 8)

FV
Secondary

PV
Secondary

signed tokens
& time

metadata
& images

…
vehicle

manifests

…

Can use TLS, etc.

Time server (optional)

67

Time server (optional)

● A primary sends a list of tokens,
one for each ECU, to the time
server.

● An automated process on the
time server returns a signed
message containing: (1) the list
of tokens, and (2) the current
time.

Automated
process

time
server

vehicle

Primary

(1)
sends
list of

tokens

(2)
receives
signed current time
& list of tokens

68

Image repository

69

The image repository

targets

A

snapshottimestamp

A*
.im

g

root

OEM-managed supplier-managed

Metadata

B

C
D

E

B*.img

C*.img

CA*.img

CB*.img

signs metadata for

signs root keys for

delegates images to
signs for images

● When possible, OEM
delegates updates for
ECUs to suppliers.

● Delegations are flexible,
and accommodate a
variety of arrangements.

A1.img

B3.img

CA5.img

CB2.img

70

Director repository

71

Director repository

● Records vehicle version
manifests.

● Determines which ECUs
install which images.

● Produces different
metadata for different
vehicles.

● May encrypt images per
ECU.

● Has access to an inventory
database.

Automated
process

Inventory
database

timestamp
metadata(3)

w
r
i
t
e
s(2) reads & writes

encrypted
image

snapshot
metadata

targets
metadata

repository

vehicle

Primary

(1)
sends

vehicle
version

manifest

(4)
receives
link to
timestamp
metadata

(5) downloads

72

Uptane workflow
on vehicle

73

Downloading updates (1)

● Primary receives an ECU Version
Manifest and a nonce from each
Secondary.

● Primary produces Vehicle Version
Manifest, a signed record of what is
installed on Secondaries

● Primary sends VVM to Director
● Primary sends nonces to Timeserver

74

Downloading updates (2)

● Timeserver returns the
signed [time and nonces] to
the Primary.

75

Downloading updates (3)

● The primary downloads
metadata from both the
Director and Image
repositories on behalf of all
ECUs

● The primary performs full
verification of metadata on
behalf of all secondaries.

76

Full verification

1. Load the latest downloaded time from the time server.
2. Verify metadata from the director repository.

a. Check the root metadata file.
b. Check the timestamp metadata file.
c. Check the snapshot metadata file.
d. Check the targets metadata file.

3. Download and verify metadata from the image repository.
a. Check the root metadata file.
b. Check the timestamp metadata file.
c. Check the snapshot metadata file, especially for rollback attacks.
d. Check the targets metadata file.
e. For every image A in the director targets metadata file, perform a preorder depth-first search for the

same image B in the targets metadata from the image repository, and check that A = B.

4. Return an error code indicating a security attack, if any. 77

Partial verification

1. Load the latest downloaded time from the time server.
2. Load the latest top-level targets metadata file from the director repository.

a. Check for an arbitrary software attack. This metadata file must have been signed by a threshold of
keys specified in the previous root metadata file.

b. Check for a rollback attack.
c. Check for a freeze attack. The latest downloaded time should be < the expiration timestamp in this

metadata file.
d. Check that there are no delegations.
e. Check that every ECU identifier has been represented at most once.

3. Return an error code indicating a security attack, if any.

78

Big picture

79

Image
Repository
(Section 5)

Director
Repository
(Section 6)

Director

Full Verification
(FV) Secondary

Partial
Verification

(PV)
Secondary

Primary
ECU

Time Server
(Section 7)

Inventory
Database

Vehicle
(Section 8)

FV
Secondary

PV
Secondary

signed tokens
& time

metadata
& images

…
vehicle

manifests

…

Can use TLS, etc.

Security properties

80

Optional security features

1. Additional storage to recover from endless data attacks

2. Time server to limit freeze attacks

81

Attacker capabilities Attacks on the primary

MitM

MitM

TS RS

SP

TR

RT

MitM

MitM

MitM

MitM

MitM

DR

Attacks on the primary

DR

TS RS DR

TS RS DR

@

**
#

#

#

Attacks on the primary: comparison

1. Eavesdrop attacks: not vulnerable when no director keys.
2. Partial bundle installation attacks: can be detected (and fixed) by director.
3. Freeze attacks: now needs timestamp, release, and director keys. Limited till

earliest expiration timestamp.

TUF Uptane

83

Type of secondary

Attacker capabilities Full verification Partial verification

Attacks on secondaries if primary not compromised

**

84

MitM

MitM

TS RS

SP

TR

RT

MitM

MitM

MitM

MitM

MitM

DR

DR

TS RS DR

TS RS DR

@

#

#

#

Attacks on secondaries: comparison

1. Endless data attacks: no secondary vulnerable (unless remotely exploited),
because bootloader can restore from previous working image on additional
storage.

TUF Uptane

85

Type of secondary

Attacker capabilities Full verification Partial verification

Attacks on secondaries if primary compromised

**

86

MitM

MitM

TS RS

SP

TR

RT

MitM

MitM

MitM

MitM

MitM

DR

DR

TS RS DR

TS RS DR

@

#

#

#

Type of secondary

Attacker capabilities Full verification Partial verification

Attacks on secondaries if primary compromised

**

87

MitM

MitM

TS RS

SP

TR

RT

MitM

MitM

MitM

MitM

MitM

DR

DR

TS RS DR

TS RS DR

@

#

#

#

OMA-DM, ITU-T X.1373, etc.
enable full control with a
single compromise

Attacks on secondaries if primary compromised: comparison

● Differences from when primary not compromised
○ When director keys are compromised, rollback & arbitrary software attacks on ALL partial verification secondaries on

ALL vehicles.
○ Full verification secondaries NOT affected until at least the right supplier’s keys are compromised.

TUF Uptane

88

Attacks on secondaries if primary compromised: comparison

● Differences from when primary not compromised
○ When director keys are compromised, rollback & arbitrary software attacks on ALL partial verification secondaries on

ALL vehicles.
○ Full verification secondaries NOT affected until at least the right supplier’s keys are compromised.

TUF Uptane

89

OMA-DM, ITU-T X.1373, etc.
enable full control with a
single compromise

Deployment

90

What changes are needed to use Uptane?
1. OEM sets up and maintains

○ Director repository
○ Image repository
○ Time server (optional)

2. Images are signed by
○ Supplier, or
○ OEM, or
○ Both!

3. ECUs shall do either
○ Full verification, or
○ Partial verification

4. May keep using your existing TLS, etc. transport
○ If transport / caching compromised, little security risk

In practice OEMs have these pieces already... 91

OEM: director repository

● Used to instantly respond to new
information

○ Typically used to instruct a vehicle which
updates to install, depending on what it has

○ Can be used to instantly blacklist updates

● Wholly automated
○ Online keys
○ Use Uptane API to generate signed metadata
○ Uses an inventory database to read and write

information about ECUs (e.g., public keys, what
was previously installed, etc.)

92

OEM: image repository

● Used to publish images produced by suppliers
● Occasional administration

○ Periodically (e.g., weekly, monthly) update metadata about available images
○ Use Uptane command-line tools to generate metadata
○ Use threshold of offline keys (e.g., Yubikey, HSM, etc. often used) to sign metadata

93

Supplier

● Supplier should sign metadata about
images

○ Run a single command to produce metadata
○ Keys must be offline for security
○ Could further delegate to teams / suppliers
○ Used when producing a new image for

deployment
○ Could use a threshold of keys if they elect

● Upload metadata and images to OEM
● May be done by OEM on behalf of

supplier

94

ECU

● Full verification
○ For safety-critical ECUs that should not be

hacked
○ Optionally, use additional storage space to be

able to rollback in case of emergency

● Partial verification
○ For ECUs with speed and / or memory

constraints
○ If cannot do this, then do not update OTA!

● Each ECU should store one key
○ Asymmetric key preferred, but not required

95

OEMVehicle

offline
keys

Image
repository

online
keys

ECU
Director

repository

Uptane status / wrap up

96

Uptane an Open and Secure SOTA system
● Multiple open source, free to use implementations

○ C++ (Automotive Grade Linux), C, Python reference implementation

● Diverse set of vendors and integrators
■ Robust participation from dozens of organizations (vendors, OEMs,

regulators, security experts, etc.)
○ Solid, battle-tested technology mandated by several OEMs
○ Completely free / no license or patent restrictions
○ We welcome other interested parties to participate

● Uptane meets and surpasses existing regulatory proposals for security
○ Tech based upon widely deployed, advanced security systems
○ Upcoming regulation is mandating compromise resilience 97

Uptane Standardization

● Open, Community standardization effort
○ Completely free to join

■ All funding from DHS (US Government), no vendor / OEM payment
needed

○ IEEE / ISTO standard (1.0.0)
○ Linux Foundation JDF project

■ Future revisions: ISO standardization
○ Testing Plan and Deployment Considerations standardization in progress
○ All documents are open and free to use

98

Security Reviews

Reviews of implementations and design:

○ Cure53 audited ATS's Uptane implementation
○ NCC Group audited Uptane's reference implementation

(pre-TUF fork)
○ SWRI provided Uptane reference implementation /

specification audit
○ ...

99

Work closely with vendors, OEMs, etc.
● Many top suppliers / vendors adopted

Uptane in future cars!
○ About 1/3 new cars on US roads

● Automotive Grade Linux
● OEM integrations

○ Easy to integrate!

Uptane Integration

10
1

Uptane integrates with in-toto
→ Verifiably define the steps of the software supply chain

→ Verifiably define the authorized actors

→ Guarantee that everything happens according to definition, and nothing else

Sort of like Uptane for the supply chain

in-toto secures the complete software
supply chain!

{
 "_type": "layout",
 "expires":"2017-08-31T12:44:15Z",
 "keys": {
 "0c6c50": { ... }
 },
 "signatures": [...],
 "steps": [{
 "_type": "step",
 "name": "checkout-code",
 "expected_command": ["git", "clone", "..."],
 "expected_materials": [],
 "expected_products": [
 ["CREATE", "demo-project/foo.py"], ...],
 "pubkeys": ["0c6c50..."],
 "threshold": 1
 }, ...],
 "inspections": [...]
}

10
2

Bob

Carol

Dave

Erin

Alice

in-toto -- Layout

10
3

{
 "_type": "Link",
 "name": "code",
 "byproducts":
{"stderr": "", "stdout":
""},
 "command": [...],
 "materials": {},
 "products": {
 "foo": {"sha256":
"..."}},
 "return_value": 0,
 "signatures": [...]
}

{
 "_type": "Link",
 "name": "build",
 "byproducts":
{"stderr": "", "stdout":
""},
 "command": [...],
 "materials": {...},
 "products": {
 "foo": {"sha256":
"..."}},
 "return_value": 0,
 "signatures": [...]
}

{
 "_type": "Link",
 "name": "build",
 "byproducts":
{"stderr": "", "stdout":
""},
 "command": [...],
 "materials": {},
 "products": {
 "foo": {"sha256":
"..."}},
 "return_value": 0,
 "signatures": [...]
}

{
 "_type": "Link",
 "name": "build",
 "byproducts":
{"stderr": "", "stdout":
""},
 "command": [...],
 "materials": {},
 "products": {
 "in-toto/.git/HEAD":
{"sha256": "..."}},
 "return_value": 0,
 "signatures": [...]
}

$ in-toto-run -- ./do-the-supply-chain-step

in-toto -- Link -- Attestation for each step

{
 link
}

$ in-toto-verify --layout <layout> --key <pub key>

{
 link
} {

 link
} {

 Link
}

{
 Layout
}

End User

Final Product

in-toto -- Verification

10
4

10
5

...

End User

in-toto -- Inspections

● Used to verify metadata from within a step
● Performed by the client
● Uses link + additional (app specific)

metadata and the layout

in-toto + Uptane

10
6

● in-toto cryptographically secures the whole supply chain
○ all the way right and left
○ Security grounding / principles from TUF
○ Prevents, detects, and mitigates compromises

● Lots of production use

● Try out in-toto!
○ https://in-toto.io

Uptane Press

○ Dozens of articles
○ TV / Radio / Newspapers / Magazines

107

What we want to avoid

● Some groups will elect to use insecure designs
○ Computer security designs are open / publicly reviewed for a reason!

■ Equivalent: Use SnakeOil proprietary brand symmetric
encryption instead of AES, we have 7 more S-boxes!

■ Equivalent: Use SnakeOil proprietary brand crypto instead of TLS,
we use less bandwidth and have a better slogan!

○ Don’t fall for marketing tricks!

● Companies that do not secure their cars put lives at risk
○ Attacks will happen
○ Lawsuits will cost hundreds of millions of USD

■ Hiding behind weak regulation will not be effective

People will die!
108

Get Involved With Uptane!

● Workshops
● Technology demonstration
● Compliance tests
● Standardization (IEEE / ISTO)
● Join our community! (email: jcappos@nyu.edu or go to the Uptane forum)

https://uptane.github.io/

109

mailto:jcappos@nyu.edu

110

For more details, please see the
Implementation Specification and other

documentation at uptane.github.io

