

TungstenFabric (Contrail) at Scale in Workday

Mick McCarthy, Software Engineer @ Workday David O'Brien, Software Engineer @ Workday

Agenda

Introduction
Contrail at Workday
Scale
High Availability
Weekly Production Release Cycle
Segmentation
Conclusion
Q & A

Introduction

Personal Intro

Mick McCarthy

- Software Engineer @ Workday
- Providing Network services to the Workday Private Cloud based on OpenStack

Personal Intro

David O'Brien

- Software Engineer @ Workday
- Providing Network services to the Workday
 Private Cloud based on OpenStack

Topic Intro

Contrail at Scale in Workday

- Workday Enterprise SaaS
 - HCM, Finance, Payroll

Contrail @ Workday

History

- Running Contrail in Production since early 2016
- Versions in Production
 - 2.21.x => single controller non-HA
 - 3.2.x => 3 controller HA

Use Cases

- Providing Networking Services for OpenStack based Private Cloud
 - Overlay Networking (MPLSoGRE)
 - DNS
 - DHCP
 - Segmentation

Contrail Architecture

Scale

Scale

35+ OpenStack/Contrail Clusters
300K+ Cores
4K+ Hypervisors
20K+ Virtual Machines (Immutable Images)
150K+ Contrail Network Policies
100+ Tenant Networks
15+ Critical Workday Services

High Availability

High Availability

Deployment Topology

High Availability - Benefits

- 1. Fault Tolerance
- 1. Throughput
- 1. ZDT upgrades

High Availability - Challenges

- 1. Operational Complexity
- 1. "24 x 7" availability
- 1. "HA" HAProxy?
- 1. ZDT upgrades

High Availability - Lessons Learned

(1/4) Observability

(2/4) Orchestration

(3/4) Smaller clusters (more of them)

High Availability - Lessons Learned

(4/4) Contrail DNS

- Hard to configure internal DNS delegations
- Contrail DNS keeps 2 out of 3 as active

Weekly
Production
Release Cycle

Immutable Images

- Workday Services packaged as VM images
- New service version is a new version of a VM image
- Weekly service deployments (tight patch window)
- 20K+ VM deletion and recreation

Control Plane Usage

Number of POST /v2.0/ports.json per sec

Challenges

Duplicate IPs

- Contrail bug visible only under high control plane load
- Contrail uses Zookeeper to figure out next available IP in a subnet
- Caused by Zookeeper race condition

Delayed DHCP

- Contrail Control plane slowing down under high load
- vRouter handling out short term incomplete DHCP leases
- Freed up Contrail Control plane by adding memcache for Keystone (helped a bit)
- Optimized client side to reduce Contrail API traffic (big relief)

Challenges

- Contrail Schema Failover
 - Schema busy processing requests (CPU intensive)
 - Schema gevent greenlet does not yield to Zookeeper heartbeats
 - Multi master schema (causes data corruption)

Data Plane Usage

bps through the gateway routers (Juniper MX40)

Challenges

- Contrail Analytics overwhelmed with Flow data
 - Too much flow telemetry data
 - High CPU usage (all cores)
 - High IO/Disk usage on Cassandra

Lessons Learned

- Always have a Production like environment
 - End to End
 - Exactly as it happens in Production
- Test frequently
 - Ideally in CI to narrow down the changes
- Design fault tolerance with SLA in mind
 - Not enough redundancy from SLA point of view
 - Loss of one DNS would bring down DNS briefly and violate SLA
- Monitoring, Monitoring

Segmentation

Segmentation

- Fine Grained Network Policies
 - Layer 4 rules per service port
 - 150K+ rules
- Tenant Isolation
 - Subnet for each tenant
 - DNS subdomain per tenant

Challenges - Network Policies

- Size of compiled ACLs
 - Proportional to the number of rules across all policies applied to a virtual network.
 - Starts becoming bigger than the max HTTP request body size allowed by the Python Bottle web server
- Policy Updates
 - CPU intensive, needs to walk the policy, network graph
 - Schema transformer gets really busy
 - Processing happens in a greenlet, doesn't yield to anything else
 - Removed a lot of east west policies in Dev clusters

Challenges - Tenant Isolation

- IP Address Management
 - Unique, non overlapping subnet per tenant
 - OpenStack custom Heat plugins integrated with internal IPAM system for creating and allocating subnets to tenant networks
- Reverse DNS
 - Could not get reverse DNS to work with Contrail
 - Simplifying the DNS stack
 - Moving to native Neutron extensions

Lessons Learned

- Is fine grained L4 isolation really required?
 - East West wide open within an environment
 - Mutual TLS
- Dedicated CIDRs per cluster
 - Easier to separate out gateway routers in more fine grained manner.
 Advertise relevant cluster prefix to the underlay.
 - IPv4 address space limitation
- Contrail's concurrency model
- Automation

Conclusion

- 1. Contrail
- 1. Plan Ahead for Scaling
- 1. Smaller clusters (more of them)
- DevOps mindset

Thank You

Q&A

mick.mccarthy@workday.com david.obrien@workday.com