
Escaping Switch Vendor Lock-in through
Open Interfaces and Software

Brian O’Connor, ONF
Devjit Gopalpur*, Google

ONS North America - April 3, 2019
*On behalf of many at Google (Alireza Ghaffarkhah, Waqar Mohsin, Shashank Neelam, Jim Wanderer, Lorenzo Vicisano, Amin Vahdat, …)

Aggregation
Block

Aggregation
Block

Spine
Block

Spine
Block

Spine
Block

That is, until you want to
change things. A classic
example of vendor lock-in.

Explicitly, it may be
difficult/impossible to
replace individual blocks
with other vendor’s
components.

Aggregation
Block

EMS/
NMS

Single Vendor Networking Makes Life Easy

Implicitly, anything you build on this solution is inherently tied to your
vendor’s interfaces and models, amplifying the lock-in.

Multi-Vendor Introduces Complexity
But, allows for performance,
feature, and cost
optimization, while
maintaining vendor choice.

Vendor-specific EMS
understands a device’s
idiosyncrasies
● Protocols
● Models
● Pipeline

Aggregation
Block

Aggregation
Block

Spine
Block

Spine
Block

Spine
Block

Aggregation
Block

Vendor 1 Vendor 2

EMS 1

EMS 2
NMS?

Which vendor’s NMS do you use? Vendor 1 or 2? Both, and add a higher level orchestration
layer? Either way, anything built on this solution is still locked-in.

Standard Solutions to Multi-Vendor SDN
1. Least Common Denominator Interfaces (e.g. iptables, SAI)

○ Makes extensibility without recompiling the whole stack difficult
○ Harder to exploit unique hardware capabilities (e.g. programmability)

2. Underspecified Interfaces (e.g. OpenFlow, Flow Objectives)
○ More easily extensible (with some vendor-specific nuances)
○ In practice, upper layers of the stack need to be written to specific targets

3. Single Vendor Solution (e.g. vendor-specific SDKs/APIs)
○ Easy to exploit hardware’s capabilities
○ Solutions usually not portable or reusable (i.e. locked-in)
○ Typically, the only approach that performs reliably and scales

Solution: Single Vendor Networking? … we have a problem!

Google’s Approach to Multi-Vendor SDN

● Heterogeneous network
● Single consistent API

○ P4Runtime
○ OpenConfig

● Exploit unique HW
capabilities (without
changing the interfaces)

● Leverage commercial
technology / vendors
○ Networking Vendors
○ ODMs
○ In-house / OEMs

Aggregation
Block

Aggregation
Block

Spine
Block

Spine
Block

Spine
Block

Aggregation
Block

P4Runtime

Google Whitebox Vendor 1 Vendor 2

Flow
programmer

SDN
Controller

Requirements for Multi-Vendor SDN
● Support for vendor-neutral control applications

○ Control plane is written once, compiled for multiple backends, i.e. hardware.
○ Contract provides extensibility. New use cases and network roles do not require

modification of APIs or switch software.
● Support for programmable hardware

○ Even more flexibility - backend faithfully mimics software intent.
○ Pushes hardware abstraction up the stack.
○ Uniform runtime interface for heterogeneous silicon as well as network intent.

● Support for a uniform network model
○ Vendor-agnostic model of topology.
○ Simplifies operability of a multi-vendor network.

… which also provides …
● Enhanced deployment velocity at scale

○ Introduction of new functionality, hardware, etc. using common workflows.
○ Incremental support for new equipment.
○ Rapid prototyping by operators and vendors using a well-defined contract.

● Simplified migration of services
○ From traditional devices to programmable devices.
○ Between heterogeneous device blocks.

● Unified device management
○ Operators use common tools to deploy, configure, monitor and troubleshoot

devices from multiple vendors.

Control plane
(P4Runtime client app)

Control interface: P4Runtime
● API for runtime control of switches

○ Designed around PSA reference architecture
○ Extended to Fixed Pipeline Model (FPM) i.e., non-programmable

switches

● gRPC/protobuf-based API definition
○ Automatically generate client/server code for many languages

● Program-independent
○ P4 program defines the network function of a device
○ API doesn’t change with the P4 program

● Dynamic reconfigurability
○ Push new P4 program at run time
○ Re-configure switch pipeline without modifying switch software

RC of version 1.0 available: https://p4.org/p4-spec/ (p4.org API WG)

p4runtime.proto
(API)

P4Runtime service
(e.g. Stratum)

Target driver

P4 target

Slide courtesy P4.org

https://p4.org/p4-spec/

Role of P4
● Provides formal definition of the data plane pipeline tailored to a specific role

○ Describes protocol headers, tables, actions, counters, etc.
● Useful for fixed-pipeline/traditional ASICs as well as programmable chips
● Enables portability

ASIC 1 ASIC 2

Logical

Physical

Control

P4 compiler workflow

nw_role.p4

nw_role.bin

Control plane

p4runtime.proto

P4Runtime service

Target driver

Switch ASIC

p4c
(compiler)

P4 compiler generates 2 outputs:

1. Target-specific binaries
○ Used to realize switch pipeline

(e.g. binary config for ASIC, bitstream for FPGA, etc.)

2. P4Info file
○ Describes “schema” of pipeline for runtime

control
■ Captures P4 program attributes such as tables,

actions, parameters, etc.

○ Protobuf-based format
○ Target-independent compiler output

■ Same P4Info for SW switch, ASIC, etc.

nw_role.p4info

Full P4Info protobuf specification:
https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

Slide courtesy P4.org

https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

Silicon-independent remote control

P4Runtime
service (e.g. Stratum)

Target driver

Vendor A
(programmable)

P4Runtime
service (e.g. Stratum)

Target driver

Vendor B
(fixed-function)

P4Runtime
service (e.g. Stratum)

Target driver

Vendor C
(fixed-function)

Remote SDN control plane (e.g. ONOS/ODL)

SDN routing app P4-defined
custom protocol etc.

table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\f\000\...
 prefix_len: 8
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\0...
 }
 params {
 param_id: 2
 value: 7
 }
 }
}

Target-independent
protobuf format
over gRPC transport

p4info p4info p4info

p4info

Slide courtesy P4.org

OAM Interfaces: gNMI and gNOI

 Switch Chip Configuration
QoS Queues and Scheduling

Serialization / Deserialization
Port Channelization

Power supplies

Fan Speed

Port State and Mapping
LED Control

Monitor Sensors
e.g. temperature

● gNMI for:
○ Configuration
○ Monitoring
○ Telemetry

● gNOI for Operations

Software Deployment and
Upgrade

… and the list goes on.Management Network

Enhanced Configuration

● Configuration and Management
● Declarative configuration
● Streaming telemetry
● Model-driven management and operations

○ gNMI - network management interface
○ gNOI - network operations interface

● Vendor-neutral data models Platform Software

Management

gNMI gNOI

HardwareASIC

Augmenting a model
module: openconfig-interfaces
 +--rw interfaces
 +--rw interface* [name]
 +--rw config
 | +--rw name? string
 | +--rw type identityref
 | +--rw mtu? uint16
 | +--rw loopback-mode? boolean
 | +--rw description? string
 | +--rw enabled? boolean
 +--ro state
 | +--ro name? string
 | +--ro type identityref
 | +--ro mtu? uint16
 | +--ro loopback-mode? boolean
 | +--ro description? string
 | +--ro enabled? boolean
 | +--ro ifindex? uint32
 | +--ro admin-status enumeration
 | +--ro oper-status enumeration
 | +--ro last-change? oc-types:timeticks64
 | +--ro logical? boolean
 | +--ro counters
 | +--ro in-octets? oc-yang:counter64
 | +--ro in-pkts? oc-yang:counter64
 | ...

 augment "/oc-if:interfaces/oc-if:interface/oc-if:config" {

 leaf forwarding-viable {

 type boolean;

 default true;

 }

 }

+--rw forwarding-viable? boolean

Models are easy to augment,
use, and test.

Compile and re-generate
topology.

gNOI micro-services
● AdminService

○ reboot, time, ping, set package…

● CertificateManagementService
○ rotate, install, revoke certificate

● DiagService
○ BERT, Burn-in

● FileService
○ File management

Next Generation SDN Interfaces

Forwarding ChipPackets

Configuration

& Telemetry

OpenConfig
over
gNMI

Operations

gNOI

Embedded System

Pipeline
Definition

P4 Program

Northbound

Pipeline
Control

P4Runtime

● Vendor Neutral
● Extensible

Next Generation SDN picture

Stratum Stratum

Stratum Stratum Stratum

Inventory Global Orchestrator

dhcp SR
Control and Management Plane

SDN Control
Services

P4Runtime
spine.p4spine.p4

leaf.p4 leaf.p4 leaf.p4

Configuration
Services

gNOI

Monitoring &
Telemetry
Services

OpenConfig
gNMI

Admin &
Orchestration

Services

OSS / BSS

Providing an Implementation: Stratum
Open Interfaces and Models are necessary, but not sufficient, for
multi-vender interoperability.

Interfaces are defined by running code, so providing an open
source implementation helps solidify the interfaces and models.
This is not a standards exercise.

If the open source is a fully production ready distribution (ready
to run and deploy these interfaces), we can avoid bugs in
different vendor implementations and improve time to market.

Stratum Design Principles
1. Chip, Platform, and Dataplane independent interfaces

○ Interfaces and architecture are agnostic to Chip, Chassis, Peripheral, Kernel, and P4
Program

2. Generic and common APIs for local and remote control and configuration
○ Enables running control plane on or off the box

3. Lightweight
○ User space, minimal dependencies, easy to deploy, minimal system requirements, no

built-in control plane functionality (e.g. BGP)

4. Reusability and extensibility
○ Common interfaces and leverageable reference implementations (“external” switch

models like OpenConfig’s, and “internal” component interfaces like Chassis Manager)
○ Flexibility to extend to accommodate chip or platform value-added functionality
○ Favor 3rd party community work when appropriate (ONLP for peripherals)

Stratum High-level Architectural Components

kernel

hardware

user
Common (HW agnostic)
Chip specific
Platform specific
Chip and Platform specific

P4 Runtime gNMI gNOI

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chassis
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O,

Tunnel

Platform
Manager

Remote or Local Controller(s)

Switch SDK Platform API

Switch Chip Drivers Platform Drivers

Switch Chip(s) Peripheral(s)

PI and fpm-based
implementations

St
ra

tu
m

 s
w

itc
h

ag
en

t

ONLP

Stratum Implementation Details
● Implements P4Runtime, gNMI, and gNOI services
● Controlled locally or remotely using gRPC
● Written in C++11
● Runs as a Linux process in user space
● Can be distributed with ONL
● Built using Bazel

Comprehensive Test Framework
Is an open-source implementation enough for interop?
How to we prevent implementation discrepancies?

There will be other implementations, and they need to be qualified.
We also need to make sure that vendor-specific pieces are
implemented as expected.

Solution: Provide a vendor-agnostic, “black box” test framework
for any target that complies with Stratum open APIs (P4Runtime,
gNMI, gNOI) along with a repository of tests.

Writing Test Vectors

Test framework

Switch Under Test

gRPC

Traffic generators and validators

Switch Ports

Test Vector

Test Case

Stimulus 1
Stimulus 2
...

Expectation 1
Expectation 2
...

Test Vectors

Test Vectors serve as compliance tests for
Stratum-based devices.

They can be written manually or generated
automatically

- Stratum comes with a Contract Definition
language (cdlang) for generating test vectors

Black Box Qualification

Product
Requirements

Vendor Test
(Vendor)

Functional Test
on standalone

testbeds

Integration Test
in fabric testbeds

with SDN
controller

Release (or
further SDN

controller
qual)

Vendor

P4 specs,
YANG models,

open APIs

Misc. input
(trace, etc)TV creation or

mod

Body of TVs

Slide courtesy of Google

Vendor space

Operator space

Open
Source

Multi-Vendor SDN: Keys to Success
1. Open, vendor-neutral interfaces, models, and pipelines

○ OpenConfig models, P4 programs
○ Interfaces: P4Runtime, gNMI, gNOI

2. Open, vendor-agnostic reference implementation
○ Stratum

3. Open, extensive conformance test framework
○ Test Vectors Framework

Stratum Community

Stratum

Multi-vendor
white-box switches

Edge-Core, Inventec, Delta

Visit the ONF
Booth to see
Stratum in

action!

ONOS

Trellis apps
(Segment routing, multicast, vRouter, etc)

P4Runtime gNMI

Stratum

Stratum

gNOI

Stratum Flow programming
scale-up; configuration

and operations;
multi-vendor

hardware

100k IPv4
 routes

Getting involved
https://www.opennetworking.org/stratum/

Contribute to the Interfaces and reference P4 programs
● Interfaces and Models: P4Runtime, gNMI, gNOI, and the OpenConfig models
● P4 programs: Fabric.p4, Flex SAI, etc.

Become a Stratum Member
● If you are an employee of a member company, reach out to us for how to get

early access

Join the Public Mailing List
● Periodic updates on Stratum’s progress.

https://www.opennetworking.org/stratum/
https://github.com/p4lang/p4runtime
https://github.com/openconfig/gnmi
https://github.com/openconfig/gnoi
https://github.com/openconfig/public
https://github.com/opennetworkinglab/onos/tree/master/pipelines/fabric/src/main/resources
https://github.com/opencomputeproject/SAI/tree/master/flexsai/p4
https://wiki.opennetworking.org/display/COM/Stratum+Wiki+Home+Page
https://lists.stratumproject.org/listinfo/stratum-announce

