
© 2019 Nokia1

Securing the Smart
Cities Edge
Tapio Tallgren & Tina Tsou
April 5, 2019

<Document ID: change ID in footer or remove> <Change information classification in footer>

© 2019 Nokia2

Multi-Access Edge Computing (MEC) holds the promise for significant innovation and enriching our lives. But along with
this innovation comes the threat of hackers- open hardware and software, third party software open vulnerabilities that
can be exploited.

Within the Akraino Edge Stack Project, Nokia, Arm, & ecosystem partners have formed an edge blueprint for a Smart
Cities platform called µMEC, targeted for a range of use cases. Devices based on the µMEC architecture can support
sensors, connectivity protocols, etc. in different locations. As such, operating system level security is not enough. We
need security for onboarding, securing data, and verifying the integrity of firmware, operating system and system
software, as well as 3rd party applications.

In this session, we examine how technology such as Arm TrustZone and the OP-TEE software can be leveraged to
achieve these goals.

Abstract, will be deleted!

© 2019 Nokia3

Smart Cities

<Document ID: change ID in footer or remove> <Change information classification in footer>

© 2019 Nokia4

Smart cities? We all know what they
look like.

Smart cities thrive on data...

© 2019 Nokia5

© 2019 Nokia6

© 2019 Nokia7

import paho.mqtt.client as mqtt
import json
import csv

The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):
 if rc==0:
 print("connected OK Returned code=",rc)
 else:
 print("Bad connection Returned code=",rc)

 # Subscribing in on_connect() means that if we lose the connection and
 # reconnect then subscriptions will be renewed.
 # This particular topic collects ALL traffic
 client.subscribe("/hfp/v1/journey/#")

The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):
 j = msg.payload.decode('utf8').replace("'", '"')
 d = json.loads(j)
 v = d["VP"]

 # I don't want all of the data, so I define here the values I want
 values=v['long'],v['lat'],v['desi'],v['oper'],v['jrn'],v['line'],v['spd'], v['dl'], v['hdg'],v['drst'],v['veh'],v['tsi']

 # There are some nulls in there, so this is just a stupid way to exclude those
 if v['lat'] > 0:
 with open(r'hsl_mqtt.csv', 'a') as f:
 writer = csv.writer(f, quoting=csv.QUOTE_NONE, lineterminator='\n')
 writer.writerow(values)

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.connect("mqtt.hsl.fi", 1883, 60)

Blocking call that processes network traffic, dispatches callbacks and
handles reconnecting.
Other loop*() functions are available that give a threaded interface and a
manual interface.
client.loop_forever()

© 2019 Nokia8

24.882184,60.196806,58,18,296,75,8.31,0,108,0,258,1553257031
24.87259,60.19451,4,40,1250,32,0.0,180,113,1,425,1553257031
24.706416,60.225422,533,22,197,259,0.78,-60,192,0,1017,1553257031
24.662606,60.219641,565,20,82,817,0.09,-106,31,0,27,1553257031
24.918395,60.183417,14,12,80,41,0.0,-268,333,0,1020,1553257013
24.918395,60.183417,14,12,80,41,0.0,-268,333,0,1020,1553257008
24.918395,60.183417,14,12,80,41,0.0,-268,333,0,1020,1553257014
24.918395,60.183417,14,12,80,41,0.0,-268,333,0,1020,1553257009
24.75139,60.199804,549,22,437,875,9.47,-60,276,0,1028,1553257031
24.843166,60.258938,560,12,347,743,0.09,240,21,1,1520,1553257031
24.92998,60.169302,39,12,81,60,0.0,0,323,0,1304,1553257031
24.922533,60.184398,10,40,503,40,0.0,0,0,0,97,1553257031
24.920059,60.186691,4,40,1248,32,6.75,-64,144,0,433,1553257031
24.668287,60.201845,213,22,10,245,8.96,-7,223,0,922,1553257031
24.804902,60.270914,436K,22,108,812,2.79,-120,84,0,847,1553257031
25.070464,60.262974,75,12,57,102,5.59,-120,279,0,920,1553257031
24.99237,60.258984,79,22,511,110,11.5,-9,299,0,603,1553257031
24.998722,60.240917,71,55,324,94,0.39,-8,68,1,1219,1553257031
24.89843,60.203181,10,40,849,40,5.47,49,104,0,429,1553257031
24.801877,60.174496,548,22,340,873,0.27,120,80,0,1036,1553257031

© 2019 Nokia9

© 2019 Nokia10

LuxTurrim5G

<Document ID: change ID in footer or remove> <Change information classification in footer>

© 2019 Nokia11

© 2019 Nokia12

© 2019 Nokia13

Akraino project

<Document ID: change ID in footer or remove> <Change information classification in footer>

© 2019 Nokia14

Presentation in ONS NA!

© 2019 Nokia15

µMEC concept

• µMEC complements the emerging 5G radio networks by
enabling new applications

• µMEC is a small form factor HW+SW platform for especially
the Smart City services on Ultra Far Edge

• It can use 5G, WLAN or fiber connection
• It can be installed on light poles, vehicles, etc
• The µMEC proof-of-concept is based on LuxTurrim5G and open

source components

<6GHz AP

mmW AP /
sBH

MUX+uMEC+
AI
+Power+TRS
+Sensors, Cameras

µMEC deployment example:
LuxTurrim5G

© 2019 Nokia16

© 2019 Nokia17

Platform Security Architecture

PSA

19 © 2019 Arm Limited

What is the Platform Security Architecture (PSA)

• Platform Security Architecture is a combination of hardware and software delivering key platform security
functions within a common security model across the various ARM architecture profiles

• Supports A, R and M profiles

• Delivers a set of guaranteed security related services to any operating system
• Flexibility of hardware system design, including CPU Core
• Flexibility of choice of operating system

• Standard ‘trusted application model’
• Avoid the problems experienced in the A-profile world

20 © 2019 Arm Limited

PSA defines a common security model

Based on security by separation

• PSA protects sensitive assets (keys, credentials
and firmware) by separating these from the
application software and hardware

• PSA defines a Secure Processing Environment
(SPE) for this data, the code that manages it and
its trusted hardware resources

• The application software runs in the Non-secure
Processing Environment (NSPE)

• PSA requires a secure boot process so only
authentic, trusted firmware runs in the SPE

• PSA depends on secure installation of the initial
keys and firmware during manufacture

Application

OS

Device
management

Secure partition
manager

Secure
boot

Root of
Trust +

keys
Platform hardware

Non-secure processing
environment

(NSPE)

Secure processing
environment

(SPE)

21 © 2019 Arm Limited

PSA standardizes interfaces

Enabling reusable and shareable implementations

• PSA specifies interfaces to decouple
components

– Enables reuse of components in other device
platforms

– Reduces integration effort
• Partners can provide alternative

implementations
– Necessary to address different cost, footprint,

regulatory or security needs
• PSA provides an architectural specification

– Hardware, firmware and process requirements
and interfaces

Device
management

Secure partition API

Secure partition
manager

Secure hardware requirements

Boot
firmware

Root of
Trust keys

Platform hardware

Non-secure processing
environment

(NSPE)

Secure processing
environment

(SPE)

Application

OS

Se
cu

re
 IP

C

Trusted Boot

h/w Root-of-Trust
(hRoT)

23 © 2019 Arm Limited

Trusted Boot and Roots of Trust

• Initial Root-of-Trust (iRoT) / hardware Root-of-Trust (hRoT)
– Immutable 1st load of boot in ROM gets control in EL3 and establishes the iRoT

– Chain-of-Trust established from 1st load of boot through loader/OS boot

▪ Other Roots of Trust: e.g., RoT of measurement, RoT of reporting, RoT of authentication, RoT of confidentiality, RoT of
authorization, …

• Verified Boot

– Cryptographically authenticate each signed load of boot including boot loader

▪ boot loader can load and verify OS/hypervisor

• Trusted Boot
– Immutable 1st load of boot in ROM loads and verifies the next load of boot

▪ 1st load trusted because it’s immutable – provisioned in ROM at manufacture

– Each load continues to initialize the TrustZone environment

▪ Including SEL2 and the SEL1/SEL0 Secure Partitions

– Final load of firmware boot loads & instantiates UEFI secure boot/uboot/grub/etc.

▪ Instantiates and transfers control to the loader then hypervisor (or bare metal OS) in the Normal World

• Secure Firmware Update

– UEFI/EDK2 Secure Boot (+ ACPI) MM mode, Capsule Update

TrustZone

25 © 2019 Arm Limited

Arm TrustZone Technology for A-class Processors

• Hardware isolated Secure (trusted) and Normal (non-trusted) worlds
– Secure hardware resources are only accessible to software running in the Secure World (TEE)

▪ Encompasses memory, software, bus transactions, interrupts, and peripherals

▪ Provides access to secure services running in TZ

▪ Provides confidentiality and integrity for secure assets

▪ Statically allocated resources at boot time

• Runs on each Application Processor (AP)
– Transitions to Secure World via an architected instruction: SMC

▪ Think of it like an SVC or HVC

– NOT like intel SMM

V8A AP Normal and Secure World, single
processor

Multiple V8A AP Normal and Secure Worlds, one set per
processor

26 © 2019 Arm Limited

TrustZone With OP-TEE

Normal World
• Exception Levels

– EL0: user mode – applications

– EL1: kernel mode – OS kernel

– EL2: hypervisor mode – hypervisor

– EL3: Secure Monitor mode – manages secure
transition from/to Secure World
▪ Power State Coordination Interface (PSCI)

platform code by SiP

Secure World
• Exception Levels

– SEL0: secure user mode – trusted apps

– SEL1: secure kernel mode – trusted OS
V8A AP Normal and Secure World – with OP-TEE as Secure
OS

© 2019 Nokia27

Demo!

<Document ID: change ID in footer or remove> <Change information classification in footer>

© 2019 Nokia28

Demo!

© 2019 Nokia29

Demo!

https://docs.google.com/file/d/1LWk2lGfcb4nqYIyK5z9tTONE6Nn_lWOY/preview

