
Packet Walk(s) In
Kubernetes

Don Jayakody, Big Switch Networks
@techjaya

linkedin.com/in/jayakody

• We are in the business of
“Abstracting Networks” (As one
Big Switch) using Open
Networking Hardware

About Big Switch

About

• Spent 4 years in Engineering
building our products. Now in
Technical Product
Management

About Me
Kubernetes:

Abstracted Compute Domain

Legacy Next-Gen

http://www.youtube.com/watch?v=HlAXp0-M6SY&t=0m43s

Why Not Abstract the Network?

• Namespace/Pods/CNIs?
• What’s that “Pause” Container really

do?
• Flannel: Intro / Packet Flows
• Exposing Services

Intro: K8S Networking

Agenda

• Architecture
• IP-IP Mode (Route formation / Pod-to-

pod communication / ARP Resolution/
Packet Flow)

• BGP Mode (Peering requirements/
Packet Flow)

Calico: Networking

• Architecture
• Overlay Network Mode

(Configuration/ Pod-to-pod
communication/ Datapath / ARP
Resolution/ Packet Flow)

• Direct Routing Mode

Cilium: Networking

• Linux kernel has 6 types of
namespaces: pid, net, mnt, uts, ipc, user

• Network namespaces provide a brand-new
network stack for all the processes within the
namespace

• That includes network interfaces, routing
tables and iptables rules

Namespaces

K8S Networking: Basics

eth0

namespace-1

eth0

namespace-2

veth1veth0

bridge

eth0root namespace

Node1

• Lowest common denominator in K8S. Pod is
comprised of one or more containers along with a
“pause” container

• Pause container act as the “parent” container for
other containers inside the pod. One of it’s primary
responsibilities is to bring up the network
namespace

• Great for the redundancy: Termination of other
containers do not result in termination of the
network namespace

Pods

K8S Networking: Basics

• Multiple ways to access pod
namespaces

• ‘kubectl exec --it'
• ‘docker exec --it’
• nsenter (“namespace enter”, let

you run commands that are
installed on the host but not on
the container)

Accessing Pod
Namespaces

K8S Networking: Basics

Both containers belong to the same pod => Same Network Namespace => same ’ip a’ output

• Interface between container runtime and network
implementation

• Network plugin implements the CNI spec. It takes
a container runtime and configure (attach/detach)
it to the network

• CNI plugin is an executable (in: /opt/cni/bin)
• When invoked it reads in a JSON config &

Environment Variables to get all the required
parameters to configure the container with the
network

Container Networking
Interface : CNI

K8S Networking: Basics Container	
Runtime

CNI	
Plugin

Container	Networking	Interface	

Configures Networking

Credit:https://www.slideshare.net/weaveworks/introduction-to-the-container-network-interface-cni

• Node IP belongs to 2
different subnets:
25.25.25.0/24 &
35.35.35.0/24

• Gateway is configured with
.254 in the network for
each network segment

• Bond0 interface is created
by bonding two 10G
interfaces

Topology Info

Topology

bond0root

Node-121

25.25.25.121

bond0root

Node-122

35.35.35.122

• To make networking easier, Kubernetes does
away with port-mapping and assigns a unique IP
address to each pod

• If a host cannot get an entire subnet to itself things
get pretty complicated

• Flannel aims to solve this problem by creating an
overlay mesh network that provisions a subnet to
each server

Intro

Flannel
K8S

Flannel	CNI	Plugin

FlannelD
(VXLAN/UDP..)

Network

• “Flannel.1” Is the VXLAN
interface

• CNI0 is the bridge

Default Config

Flannel

bond0root

Node-121

25.25.25.121

bond0root

Node-122

35.35.35.122

cni0

flannel.1

cni0

flannel.1

Flannel

bond0root

Node-121

25.25.25.121

bond0root

Node-122

35.35.35.122

cni0

flannel.1

cni0

flannel.1

• Brought up 2 pods

Pod-to-Pod
Communication

eth0pod1

10.244.1.2

eth0pod2

10.244.2.2

veth-x veth-y

Flannel

bond0root

Node-121

25.25.25.121

bond0root

Node-122

35.35.35.122

cni0

flannel.1

cni0

flannel.1• VETH Interface with ”veth-”
got created on the root
namespace

• Other end is attached to
the pod namespace

Pod-to-Pod
Communication

eth0pod1

10.244.1.2

eth0pod2

10.244.2.2

veth-x veth-y

notice the index on veth.
eg: “eth0@if12” on pod1 ns corresponds to 12th interface on the root ns

Flannel

bond0root

Node-121

25.25.25.121

bond0root

Node-122

35.35.35.122

cni0
flannel.1

cni0
flannel.1

• ’cni0’ bridge is replying to
ARP requests from the pod

ARP Handling

eth0pod1

10.244.1.2

eth0pod2

10.244.2.2

veth-x veth-y

1

2
ARP Reply

Flannel

bond0root

Node-121

25.25.25.121

bond0root

Node-122

35.35.35.122

cni0
flannel.1

cni0
flannel.1

• Routing table lookup to
figure out where to send
the packet

Packet Flow

eth0pod1

10.244.1.2

eth0pod2

10.244.2.2

veth-x veth-y

1

2

Flannel

bond0root

Node-121

25.25.25.121

bond0root

Node-122

35.35.35.122

cni0
flannel.1

cni0
flannel.1

• Flannel.1 device does
VXLAN encap/decap

• Traffic from pod1 is going
through “flannel.1” device
before exiting

Packet Flow

eth0pod1

10.244.1.2

eth0pod2

10.244.2.2

veth-x veth-y

1

2

3

4

5

6 7

12

10

9

11

8

• The primary Calico agent that runs on each
machine that hosts endpoints.

• Responsible for programming routes and ACLs,
and anything else required on the host

Felix

Calico

• BGP Client: responsible of route distribution
• When Felix inserts routes into the Linux kernel

FIB, Bird will pick them up and distribute them to
the other nodes in the deployment

Bird

• Felix's primary responsibility is to program the
host's iptables and routes to provide the
connectivity to pods on that host.

• Bird is a BGP agent for Linux that is used to
exchange routing information between the hosts.
The routes that are programmed by Felix are
picked up by bird and distributed among the
cluster hosts

Architecture

Calico

eth0

pod1

eth1

pod2

veth1

cbr0

eth0

flannel
0

Node1

iptables route	
table

Bird

Felix

eth0

pod3

eth1

pod4

veth1

cbr0

eth0

flannel
0

Node2

iptables route	
table

Bird

Felix

*etcd/confd components are not shown for clarity

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0

root

Node-122

35.35.35.122

iptables

route	table
• Node-to-node mesh
• IP-IP encapsulation

Default
Configuration

Calico

bond0

tunl0
192.168.83.64

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0
192.168.243.0

root

Node-122

35.35.35.122

iptables

route	table
• Default: Node Mesh with

IP-IP tunnel
• Route table has entries to

all the other tunl0
interfaces through other
node IPs

Default
Configuration

Route to the other node’s tunnel

Calico
“ipip” tunnel

• Default: Node Mesh with
IP-IP tunnel

• Route table has entries to
all the other tunl0
interfaces through other
node IPs

Default
Configuration

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0
192.168.243.0

root

Node-122

35.35.35.122

iptables

route	table

“ipip” tunnel

Route to the other node’s tunnel

Calico

bond0

tunl0
192.168.83.64

root

cali-x

eth0pod1

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0
192.168.243.0

root

cali-y

eth0pod2

192.168.243.2

Node-122

35.35.35.122

iptables

route	table

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

• Brought up 2 pods
• “calicoctl get wep”

(”workloadendpoints”)
shows the endpoints in
calico end

Pod-to-Pod
Communication

veth interfacesCalico

eth0pod1

cali-x

bond0

tunl0
192.168.83.64

root

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

eth0pod2

cali-y

bond0

tunl0
192.168.243.0

root

192.168.243.2

Node-122

35.35.35.122

iptables

route	table

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

The
image
part with
relationshi

• VETH Interface with “cali-
xxx” got created on the root
namespace

• Other end is attached to
the pod namespace

Pod-to-Pod
Communication

Calico

eth0pod1

cali-x

bond0

tunl0
192.168.83.64

root

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

eth0pod2

cali-y

bond0

tunl0
192.168.243.0

root

192.168.243.2

Node-122

35.35.35.122

iptables

route	table
• How does ARP gets

resolved?
• pod1 & pod2 default route

is pointing to private IPv4
“169.254.1.1”

ARP Resolution

Calico

eth0pod1

cali-x

bond0

tunl0
192.168.83.64

root

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

eth0pod2

cali-y

bond0

tunl0
192.168.243.0

root

192.168.243.2

Node-122

35.35.35.122

iptables

route	table
• Initiate ping from pod1-to

pod2
• ARP request is send to

default GW 169.254.1.1
• cali interface replies to

ARP request with it’s own
MAC

ARP Resolution

Calico
tcpdump on root veth

root veth is replying with its own MAC

Pinging from pod1 to pod21

2 3

1

ARP Reply

eth0pod1

cali-x

bond0

tunl0
192.168.83.64

root

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

eth0pod2

cali-y

bond0

tunl0
192.168.243.0

root

192.168.243.2

Node-122

35.35.35.122

iptables

route	table

• Why “Cali-” VETH
Interfaces replies to the
ARP request?

• Reason: Proxy-ARP is
enabled on the veth
interface on root
namespace

• Network is only learning
the Node IP/MACs, not pod
macs

ARP Resolution

Calico

No pod-MAC/IPs will be learned on the network. Only
Node-IPs

Proxy ARP is enabled on Cali veth:

eth0pod1

cali-x

bond0

tunl0
192.168.83.64

root

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

eth0pod2

cali-y

bond0

tunl0
192.168.243.0

root

192.168.243.2

Node-122

35.35.35.122

iptables

route	table
• After ARP Resolution

packet gets forwarded
according to the routing
table entries

• Packets will get
encapsulated via IP-IP

Packet
Forwarding

Calico
Notice the 2 IP headers: IP-IP protocl

Once the ARP is resolved, routing table rules kicks in

eth0pod1

cali-x

bond0

tunl0
192.168.83.64

root

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

eth0pod2

cali-y

bond0

tunl0
192.168.243.0

root

192.168.243.2

Node-122

35.35.35.122

iptables

route	table
• After ARP Resolution

packet gets forwarded
according to the routing
table entries

• Packets will get
encapsulated via IP-IP

Packet
Forwarding

1

2

3

Calico

8

9

10

4

5 6

7

eth0pod1

cali-x

bond0

tunl0
192.168.83.64

root

192.168.83.67

Node-121

25.25.25.121

iptables

route	table

eth0pod2

cali-y

bond0

tunl0
192.168.243.0

root

192.168.243.2

Node-122

35.35.35.122

iptables

route	table

Packet
Forwarding in
the same host

cali-z

pod3

192.168.83.68

eth0 eth0

1 3

2

Calico

• /32 routes are present in
the routing table for all the
containers

• Packets get forwarded to
the appropriate calico veth
interface based on the
routing rules

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0

root

Node-122

35.35.35.122

iptables

route	table
• Disable IP-IP Mode

Non IP-IP

Calico

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0

root

Node-122

35.35.35.122

iptables

route	table
• Disable IP-IP Mode. tunl0

interface is not present
anymore

• Routes are pointing to the
bond0 interface

• Bring up 2 pods as before

Non IP-IP
❌ ❌

eth0pod1

192.168.83.69

cali-x

eth0pod2

cali-y

192.168.243.4

No more tunl0. Pod routes are directly pointing to bond0

Calico

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0

root

Node-122

35.35.35.122

iptables

route	table
• Ping from pod1 to pod2 is

unsuccessful
• Reason: Routes are not

advertised to the Network

Non IP-IP
❌ ❌

eth0pod1

192.168.83.69

cali-x

eth0pod2

cali-y

192.168.243.4

2

1

Calico
3 ❓

Packets won’t go
Reason: No routes to the pod networks

• Need the Calico nodes to
peer with the network
fabric

BGP mode

Calico

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0

root

Node-122

35.35.35.122

iptables

route	table
❌ ❌

eth0pod1

192.168.83.69

cali-x

eth0pod2

cali-y

192.168.243.4

Bird Bird

• Create a global BGP
configuration

• Create the network as a
BGP Peer (**Assuming an
abstracted cloud network.
Config will vary depending
on vendor)

BGP Mode

Calico

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0

root

Node-122

35.35.35.122

iptables

route	table
❌ ❌

eth0pod1

192.168.83.69

cali-x

eth0pod2

cali-y

192.168.243.4

Create a BGP configuration with AS:63400 Create a ”global” BGP Peer

Both Nodes are peering with the global BGP Peer

• Configure the Calico nodes
as BGP Neighbors on the
network

• As a result network will get
to learn about
192.168.83.64/26 &
192.168.243.0/26 routes

BGP Mode

Calico

bond0

tunl0

root

Node-121

25.25.25.121

iptables

route	table

bond0

tunl0

root

Node-122

35.35.35.122

iptables

route	table
❌ ❌

eth0pod1

192.168.83.69

cali-x

eth0pod2

cali-y

192.168.243.4

Network is peering with both the Calico Nodes

Network is learning pod network routes via BGP

bond0root

Node-121

25.25.25.121

iptables

route	table

bond0root

Node-122

35.35.35.122

iptables

route	table
• Packets goes across the

network without any
encapsulations

BGP Mode

eth0pod1

192.168.83.69

cali-x

eth0pod2

cali-y

192.168.243.4

1

2

Calico

7

8

3

4 5

6

• Cilium Agent, Cilium CLI Client, CNI Plugin will be
running on every node

• Cilium agent compiles BPF programs and make
the kernel runs these programs at key points in the
network stack to have visibility and control over all
network traffic in/out of all containers

• Cilium interacts with the Linux kernel to install BPF
program which will then perform networking tasks
and implement security rules

Architecture

Cilium

eth0

pod1

eth1

pod2

veth1

cbr0

eth0

flannel
0

Node1

*etcd/monitor components are not shown for clarity

Cilium	
Agent

BPF	Program BPF	Program

• All nodes form a mesh of tunnels using the UDP
based encapsulation protocols: VXLAN (default) or
Geneve

• Simple: Only requirement is cluster nodes should
be able to reach each other using IP/UDP

• Auto-configured: Kubernetes is being run with the-
”--allocate-node-cidrs” option, Cilium can form an
overlay network automatically without any
configuration by the user

Overlay Network Mode

Cilium: Networking

• In direct routing mode, Cilium will hand all packets
which are not addressed for another local endpoint
to the routing subsystem of the Linux kernel

• Packets will be routed as if a local process would
have emitted the packet

• Admins can use routing daemon such as Zebra,
Bird , BGPD. The routing protocols will announce
the node allocation prefix via the node’s IP to all
other nodes.

Direct/Native Routing Mode

bond0

cilium_vxlan

root

Node-121

25.25.25.121

bond0

cilium_vxlan

root

Node-122

35.35.35.122

• Overlay Networking Mode
• VXLAN encapsulation
• Both VETH/IPVLAN is

supported (Higher
Performance gains with
IPVLAN)

Default
Configuration

Cilium

cilium_host
192.168.1.1

cilium_health

cilium_net

cilium_host
192.168.2.1

cilium_health

cilium_net

bond0

cilium_vxlan

root

Node-121

25.25.25.121

bond0

cilium_vxlan

root

Node-122

35.35.35.122

• ”cilium_vxlan” interface is in
metadata mode. It can send &
receive on multiple addresses

• Cilium addressing model allows
to derive the node address from
each container address.

• This is also used to derive the
VTEP address, so you don’t
need to run a control plane
protocol to distribute these
addresses. All you need to have
are routes to make the node
addresses routable

Default
Configuration

Cilium

cilium_host

cilium_health

cilium_net

cilium_host

cilium_health

cilium_net

‘cilium_vxlan’ interface is in Metadata mode.
No IP assigned to this interface

cilium_host
192.168.1.1

cilium_host
192.168.2.1

bond0

cilium_vxlan

root

lxc-x

eth0pod1

192.168.1.231

Node-121

25.25.25.121

bond0

cilium_vxlan

root

lxc-y

eth0pod2

192.168.2.251

Node-122

35.35.35.122

• VETH Interface with “lxc-
xxx” got created on the root
namespace

• Other end is attached to
the pod namespace

Pod-to-Pod
Communication

Cilium

cilium_host

cilium_health

cilium_net

cilium_host

cilium_health

cilium_net

eth0pod1

lxc-x

bond0

cilium_vxlan

root

192.168.1.231

Node-121

25.25.25.121

eth0pod2

lxc-y

bond0

cilium_vxlan

root

192.168.2.251

Node-122

35.35.35.122

• Cilium datapath uses eBPF
hooks to load BPF programs

• XDP BPF hook is at the earliest
point possible in the networking
driver and triggers a run of the
BPF program upon packet
reception

• Traffic Control (TC) Hooks: BPF
programs are attached to the
TC Ingress hook of host side of
the VETH pair for monitoring &
enforcement

Datapath

Cilium

cilium_host

cilium_health

cilium_net

cilium_host

cilium_health

cilium_net

XDP Hooks

TC Ingress Hooks

eth0pod1

lxc-x

bond0

cilium_vxlan

root

192.168.1.231

Node-121

25.25.25.121

eth0pod2

lxc-y

bond0

cilium_vxlan

root

192.168.2.251

Node-122

35.35.35.122

• Default GW of the
container is pointing to the
IP of “cilium_host”

• BPF Program is installed to
reply to the ARP request

• LXC Interface MAC is used
for the ARP reply

ARP Resolution

Cilium

cilium_host

192.168.1.1

cilium_health

cilium_net

cilium_host

cilium_health

cilium_netDefault GW of the pod is pointing to
’cilium_host’ IP

BPF program is responding with to the ARP with VETH’s (lxc-x) MAC

1
ARP Reply

eth0pod1

lxc-x

bond0

cilium_vxlan

root

192.168.1.231

Node-121

25.25.25.121

eth0pod2

lxc-y

bond0

cilium_vxlan

root

192.168.2.251

Node-122

35.35.35.122

• cilium_vxlan device does
VXLAN encap/decap

• Traffic from pod1 is going
through “cilium_vxlan”
device before exiting

Packet Flow

Cilium

cilium_health

cilium_net

cilium_host

cilium_health

cilium_net

1

2

3 8

9

10

4

5 6

7

cilium_host

eth0pod1

lxc-x

bond0root

192.168.1.231

Node-121

25.25.25.121

eth0pod2

lxc-y

bond0root

192.168.2.251

Node-122

35.35.35.122

• No VXLAN/GENEVE
overlays

• As an admin you are able
to run your own flavor of
routing daemon
(Bird/BGPD/Zebra etc) to
distribute routes

• You can make the Pod IP’s
routable as a result

Direct Routing

Cilium

cilium_host

cilium_health

cilium_net

cilium_host

cilium_health

cilium_net

Routing	
Daemon

Routing	
Daemon

Service	
IP

Pod1 Pod2 Pod3

Kube
Proxy

• Pods are mortal
• Need a higher level

abstractions: Services
• “Service” in Kubernetes is

a conceptual concept.
Service is not a
process/daemon. Outside
networks doesn’t learn
Service IP addresses

• Implemented through Kube
Proxy with IPTables rules

Services

K8S Networking: Basics
Yes! Back to the Basics…

• If Services are an abstracted concept
without any meaning outside of the
K8S cluster how do we access?

Exposing Services

K8S Networking: Basics

• NodePort / LoadBalancer /
Ingress etc.

NodePort: Service is accessed via ‘NodeIP:port’

Credit:	https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0

• Load Balancer: Spins up a load
balancer and binds service IPs to
Load Balancer VIP

• Very common in public cloud
environments

• For baremetal workloads: ‘MetalLB’
(Up & coming project, load-balancer
implementation for bare
metal K8S clusters, using standard
routing protocols)

Exposing Services

K8S Networking: Basics LoadBalancer: Service is accessed via Loadbalancer

Credit:	https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0

• Ingress: K8S Concept that lets you
decide how to let traffic into the cluster

• Sits in front of multiple services and
act as a ”router”

• Implemented through an ingress
controller (NGINX/HA Proxy)

Exposing Services

K8S Networking: Basics

Credit:	https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0

• Ingress: Network (“Abstracted
Network”) can really help you out here

• Ingress controllers are deployed in
some of your “public” nodes in your
cluster

• Eg: Big Cloud Fabric (by Big
Switch), can expose a Virtual IP in
front of the Ingress Controllers and
perform Load Balancing/Health
Checks/Analytics

Exposing Services

K8S Networking: Basics

Virtual-IP

Kube-1862 Kube-1863

Thanks!

• Repo for all the command outputs/PDF slides:
https://github.com/jayakody/ons-2019

• Credits:
• Inspired by Life of a Packet- Michael Rubin, Google (https://www.youtube.com/watch?v=0Omvgd7Hg1I)
• Sarath Kumar, Prashanth Padubidry : Big Switch Engineering
• Thomas Graf, Dan Wendlandt: Isovalent (Cilium Project)
• Project Calico Slack Channel: special shout out to: Casey Davenport, Tigera
• And so many other folks who took time to share knowledge around this emerging space through different mediums

(Blogs/YouTube videos etc)

