
© Hitachi, Ltd. 2019. All rights reserved.

Implementing security and availability requirements for

banking API system using Open Source Software (OSS)

Open Source Summit Japan 2019

Hitachi, Ltd.

OSS Solution Center

Yoshiyuki Tabata

1© Hitachi, Ltd. 2019. All rights reserved.

Self introduction

Yoshiyuki Tabata :
OSS Solution Center, Hitachi, Ltd. @ Yokohama, Japan

• Software engineer
• API Management & Identity Management

• 3scale, Keycloak
• Contributor of 3scale

• Developed “Edge Limiting policy”, “Keycloak Role Check policy”

© Hitachi, Ltd. 2019. All rights reserved.

Contents

2

1. Introduction: background and requirements

2. Usage of OSS to meet requirements

3© Hitachi, Ltd. 2019. All rights reserved.

Background: Banking API and its security in Japan

• The revised banking act was published in Jun 2017 to promote API.
• Similar to PSD2 in EU

• 83% of banks (114 banks) answered they will open API by 2020/6(*).
(*) Based on survey of Japanese Bankers Association as of Dec 2017

• Security : OAuth 2.0 is recognized as a key technology to secure API

Quoted from Report about open API by the Japanese Bankers Association
https://www.zenginkyo.or.jp/fileadmin/res/news/news290713_3.pdf

4© Hitachi, Ltd. 2019. All rights reserved.

Usage of OAuth 2.0: Authentication, Authorization

End users Applications API Server

3. Who is allowed what?
-> Access control

(Authorization)

Uses Apps
via browsers or
mobile devices

Call REST API

Access token

* OAuth 2.0 (RFC 6749) only describes how tokens are issued.
We have to use other standards or create something outside of standards.

1. Who is using API?
-> User authentication

2. What is using API?
-> Client authentication

OAuth 2.0

5© Hitachi, Ltd. 2019. All rights reserved.

Requirements for Authentication/Authorization for banking API

Category Description

1 Authentication • Can support various (customized) authentication in

OAuth flow

• Compliance to OpenID Connect on top of OAuth

2 Access control • Deny/Allow accesses based on claims in token

• Can be combined with rate limit to protect backend

3 Manage tokens • Revoke tokens triggered by users, administrators

• Revoke tokens based on policy

4 Compliance to the

latest standards

• Financial-grade API (FAPI) of OpenID Foundation

6© Hitachi, Ltd. 2019. All rights reserved.

Background: Banking API and its availability

Level 5 4 3 2

Operating Rate > 99.999% > 99.99% > 99.9% > 99%

Total recovery time per

year (MTTR)
< 5.26 min < 52.6 min < 8.76 h < 87.6 h

Recovery time per failure < 1 min < 10 min < 1 h < 2 h

Banking API

System Infrastructure Non-Functional Requirements Related Grade Table

• Non-Functional Requirements 2018(*) was published in Apr 2018
to construct appropriate information systems, and enable stable provision of services.
(*) Reported by Information-Technology Promotion Agency, Japan

• Information systems are categorized into 5 levels according to characteristics.

• In our experience, almost all banking API systems belong to over Level 3.

7© Hitachi, Ltd. 2019. All rights reserved.

Achieve Level 3

How to minimize MTTR (< 8h) and the recovery time per failure (< 1 h).

• Generally, to construct HA configuration and failover the system
when a failure has occurred.

• To configure the system to be recovered automatically.
-> Fault Tolerance

* This takes a high cost for preparing more resources than usual.

• To reduce dependencies of each component.
-> Fail Soft / Fault Avoidance

Level 3 Level 2

banking API system

highly
depends on

critical critical

Level 3 Level 2

banking API system

not
depends on

critical not critical

8© Hitachi, Ltd. 2019. All rights reserved.

Requirements for Availability for banking API

Category Description

1 Fault Tolerance • HA configuration

• Can be recovered automatically

2 Fail Soft/

Fault Avoidance

• Reduce dependencies of each component

© Hitachi, Ltd. 2019. All rights reserved.

Contents

9

1. Introduction: background and requirements

2. Usage of OSS to meet requirements
• Which OSS should be used?
• Security requirements
• Availability requirements

10© Hitachi, Ltd. 2019. All rights reserved.

Open API system

API
Gateway

Legacy
Backend

REST API
Server

Applications
(Web App,
Mobile App)

Developer
Portal

API Management

Manager

App DevelopersEnd Users
Bank

• API Management product is usually used for common functions to open APIs
• Rate limit, dev portal, analytics etc.

• It is desirable authentication/authorization are integrated into API management

Authentication/
Authorization

11© Hitachi, Ltd. 2019. All rights reserved.

Open Source Software (OSS) for open API

• There are various OSSs
• We chose “3scale” and “Keycloak”

• Completeness of feature
• Activity and future of community

OSS

API Management 3scale WSO2

Kong tyk

Authentication/

Authorization

Keycloak OpenAM

Gluu

12© Hitachi, Ltd. 2019. All rights reserved.

API Management

What is 3scale

API
Gateway
(APIcast)

Legacy
Backend

REST API
Server

Applications
(Web App,
Mobile App)

Developer
Portal(porta)

Manager
(porta)

App DevelopersEnd Users

Authentication/
Authorization

Container Platform

• Include full functions of API management (not only API GW)
• Cloud native : Works on OpenShift or okd
• OAuth2, OIDC in combination with Keycloak

OSS for API Management, community is led by Red Hat: https://github.com/3scale

https://www.google.co.jp/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi-yK-SgcbSAhXLbbwKHX-GCXkQjRwIBw&url=https://www.3scale.net/&psig=AFQjCNHqVCzS664xenzCjfyiKJrKWKPbuA&ust=1489031595241729
https://github.com/3scale

13© Hitachi, Ltd. 2019. All rights reserved.

What is Keycloak

Identity Management
Authentication

Social Login
(Identity Brokering)

Identity Federation
OpenID Connect, OAuth 2.0, SAML

OSS for Identity Management, community is led by Red Hat: https://www.keycloak.org

LDAP
Active Directory

RDB

https://www.keycloak.org/

© Hitachi, Ltd. 2019. All rights reserved.

Contents

14

1. Introduction: background and requirements

2. Usage of OSS to meet requirements
• Which OSS should be used?
• Security requirements
• Availability requirements

15© Hitachi, Ltd. 2019. All rights reserved.

<Recap> Requirements for Authentication/Authorization for banking API

Category Description

1 Authentication • Can support various (customized) authentication in

OAuth flow

• Compliance to OpenID Connect on top of OAuth

2 Access control • Deny/Allow accesses based on claims in token

• Can be combined with rate limit to protect backend

3 Manage tokens • Revoke tokens triggered by users, administrators

• Revoke tokens based on policy

4 Compliance to the

latest standards

• Financial-grade API (FAPI) of OpenID Foundation

Implemented these requirements using 3scale + Keycloak,
collaborating with OSS community

16© Hitachi, Ltd. 2019. All rights reserved.

Authentication : Registering Apps

Authentication within OAuth/OIDC flow works well, basically

Keycloak

Dev/Admin
portal

(system)

Developer/Administrator

(1) Generate client ID/secret
via Web console,
and register app

zync

MySQL

3scale

(2) Register client ID/secret
to manage from 3scale

(3) Sync client ID/secret to
Keycloak

* OAuth 2.0 Dynamic Client Registration Protocol (RFC 7591)

17© Hitachi, Ltd. 2019. All rights reserved.

Authentication : Authentication / Issue token

(1) Redirect to login screen

User data
store

(2) Authenticates user using
user data storage

(3) Authorization code

(4) Token request with client secret

(5) Access token and ID token

Authentication within OAuth/OIDC flow works well, basically

e.g.) Authorization code grant

End user

KeycloakApplication

18© Hitachi, Ltd. 2019. All rights reserved.

Authentication : Issues

1. PKCE (RFC 7636) is required to protect code

(1) Redirect to login screen

User data
store

(2) Authenticates user using
user data storage

(3) Authorization code

(4) Token request with client secret

(5) Access token and ID token

End user

KeycloakApplication

2. Login screen is generated by Keycloak.
However, it lacks high customizability.

19© Hitachi, Ltd. 2019. All rights reserved.

PKCE support for Keycloak

• Keycloak did not support PKCE..
-> We submitted PR and merged.

https://github.com/keycloak/keycloak/pull/3831

• From Keycloak 3.1.0, PKCE was supported.
• Enabled by default (no switch)
• Only when PKCE is requested from a client, it works
• Included in OIDC server metadata from 4.0.0

https://github.com/keycloak/keycloak/pull/3831

20© Hitachi, Ltd. 2019. All rights reserved.

Highly customized login screen

(1) Redirect to login screen

(2) Forward login
screen & result

(3) Authorization code

(4) Token request with client secret

(5) Access token and ID token

End user

KeycloakApplication
Login

Screen
AP server

1. Delegates login screen by using
Identity brokering feature

2. Login screen/logic can be coded
as customers like

Extra parameters could not be forwarded

Besides the template, login screen can be generated by delegated server

We submitted a patch to enable forward parameters from Keycloak.
https://github.com/keycloak/keycloak/pull/5163

https://github.com/keycloak/keycloak/pull/5163

21© Hitachi, Ltd. 2019. All rights reserved.

Access Control

Keycloak only issues tokens. Access control is out of scope.

API
Gateway
(APIcast)

REST API
Server

Applications
(Web App,
Mobile App)

Access control has to be implemented in
APIcast or REST API server

APIcast did not support access control using tokens -> We submitted PRs.

API Request with
access token

More convenient, to reduce development in REST API server

22© Hitachi, Ltd. 2019. All rights reserved.

How to access control using tokens

{
"jti": "c26a32c4-4b48-4c2f-a7da-3b9b8ecad652",
"exp": 1535424101,
"nbf": 0,
"iat": 1535423801,
"iss": "http://localhost:8080/auth/realms/provider",
"aud": "broker",
"sub": "e4b11e2e-9136-409b-8720-57463c627c10",
"typ": "Bearer",
"azp": "broker",
"auth_time": 0,
"session_state": "ac1767e2-2e30-4d44-b6f3-b77935a7a0bc",
"acr": "1",
"allowed-origins": [],
"realm_access": {

"roles": [
"read",
"additional",
"write"

]
},

"name": "Takashi Mogi",
"preferred_username": "mogi",
"given_name": "Takashi",
"family_name": "Mogi",
"email": "mogi@example.com"

}

• The format of access token is not
standardized neither RFC nor OIDC.
-> It depends on implementation.

• In Keycloak, the format is similar to
ID token of OIDC (JWT, claims).

-> We targeted the Keycloak access token,
and developed 2 policies(*).

(*) plugin to extend functions of APIcast

23© Hitachi, Ltd. 2019. All rights reserved.

Keycloak Role Check policy

• Checks “role” claims of access token and URL.
• We submitted a patch and included from 3scale 2.3.

https://github.com/3scale/apicast/pull/773

{
"jti": "c26a32c4-4b48-4c2f-a7da-3b9b8ecad652",
"exp": 1535424101,
…
"allowed-origins": [],
"realm_access": {
"roles": [
"role1"

]
},

End User

Client
Application

Keycloak

APIcast API Backend

Resources:
/resource1

Role Check:
Require “role1” to access to “/resource1”

1
. R

eq
u

es
t

“r
o

le
1

”

4
. Issu

e
 acce

ss
to

ken
 in

clu
d

in
g

“ro
le1

”

5. “GET /resource1”
with access token

6. Allow to access
to “/resouce1”

Use

Access Token

https://github.com/3scale/apicast/pull/773

24© Hitachi, Ltd. 2019. All rights reserved.

Edge Limiting policy

Rate limiting: A kind of access control, to control the upper limit of traffics.
APIcast did not support STRICT rate limiting to protect backend.

-> We implemented patches and “Edge limiting policy” was included in 3scale 2.3.

API
Gateway
(APIcast)

REST API
Server

Applications
(Web App,
Mobile App)

API Request with
access token

Any values can be extracted as a key to control access
- header
- body parameter
- JWT claim
- etc.
https://github.com/3scale/apicast/pull/719

Protects backend by rate limit, types of limit:
- leaky bucket
- fixed window
- concurrent connections
https://github.com/3scale/apicast/pull/648

https://github.com/3scale/apicast/pull/719
https://github.com/3scale/apicast/pull/648

25© Hitachi, Ltd. 2019. All rights reserved.

Keycloak itself has features to revoke tokens

• Revoke tokens triggered by administrator
-> Can be revoked from admin console

• Revoke tokens based on policy
-> Timeout can be configured in admin console

• Revoke tokens triggered by users
- Keycloak does not support OAuth 2.0 Token Revocation (RFC 7009)
- Instead, logout endpoint(*) is used.

(*) /auth/realms/<realm>/protocol/openid-connect/logout
Related access tokens, ID tokens, refresh tokens are revoked.

Manage tokens

26© Hitachi, Ltd. 2019. All rights reserved.

Manage tokens : Issue

1) API Request
with token

2) Token Introspection
(Check token is alive)API

Gateway
(APIcast)

Applications
(Web App,
Mobile App)

Keycloak

• Only authorization server knows that tokens are revoked…
API gateways couldn’t deny API requests even if tokens were revoked.

• API gateways MUST ask the authorization server whether tokens were revoked.
-> token introspection (RFC 7662)

27© Hitachi, Ltd. 2019. All rights reserved.

Token Introspection policy

• We implemented patches and “Token Introspection policy” was included in 3scale 2.3.
https://github.com/3scale/APIcast/pull/619

• This policy can cache the result of token introspection
for reducing performance impact
https://github.com/3scale/APIcast/pull/656

1) API Request
with token

2) Token Introspection
(Check token is alive)API

Gateway
(APIcast)

Applications
(Web App,
Mobile App)

Keycloak

https://github.com/3scale/APIcast/pull/619
https://github.com/3scale/APIcast/pull/656

28© Hitachi, Ltd. 2019. All rights reserved.

How API is called in 3scale 2.3 + Keycloak

1) API Request
with token

2) Token Introspection
(Token Introspection policy)

3scale API
Gateway
(APIcast)

REST API
Server

Applications
(Web App,
Mobile App)

Keycloak

3) Access control
(Role Check policy, Edge Limiting policy)

4) Extract necessary information from
access token and set header
(Header policy)

5) API Request with necessary
information in header

29© Hitachi, Ltd. 2019. All rights reserved.

Compliance to the latest standard: FAPI

OAuth

OpenID
Connect
(OIDC)

Spec to exchange access token(authorization info).
A lots are left to implementers,
insecure usage can easily happen.

In addition to OAuth,
ID token (authentication info) can be included.
Usage of OAuth is a bit hardened.

ＦＡＰＩ

FAPI (Financial-Grade API) is being standardized in OpenID Foundation.
Part1 (Read Only), Part2 (Read Write), JARM, CIBA

Secure usage of OAuth and OIDC
is standardized.

30© Hitachi, Ltd. 2019. All rights reserved.

FAPI in Japan

• FAPI is still implementer’s draft as of today
• However, being strongly promoted in banking industry

Quoted from “Report of Review Committee on Open APIs: Promoting Open Innovation”, Japanese Bankers Association
https://www.zenginkyo.or.jp/fileadmin/res/news/news290713_3.pdf

• We have to prepare for FAPI in advance, because can not implement soon.

31© Hitachi, Ltd. 2019. All rights reserved.

Issues toward FAPI in Keycloak

JIRA Description Pull

Request

Included

version

KEYCLOAK-2604 RFC 7636(PKCE) support 3831 3.1.0

KEYCLOAK-5661 shall return the list of allowed scopes with the

issued access token

4527 3.4.0

KEYCLOAK-5811 Client authentication client_secret_jwt 4835 4.0.0

KEYCLOAK-6700 Support of s_hash 5022 4.0.0

KEYCLOAK-6768 Support of Encrypted ID token 5779 Not yet

KEYCLOAK-6770 Signature algorithm (PS256 or ES256) support 5533 4.5.0

KEYCLOAK-8460 Signature algorithm (PS256 or ES256) support

(for request object)

5603 4.7.0

KEYCLOAK-6771 Support for holder of key mechanism 5083 4.0.0

Investigated implementation of Keycloak, and reported issues.

We were developing patches with community, major parts were resolved.
Our colleague @tnorimat is mainly working.

https://issues.jboss.org/browse/KEYCLOAK-2604
https://github.com/keycloak/keycloak/pull/3831
https://issues.jboss.org/browse/KEYCLOAK-5661
https://github.com/keycloak/keycloak/pull/4527
https://issues.jboss.org/browse/KEYCLOAK-5811
https://github.com/keycloak/keycloak/pull/4835
https://issues.jboss.org/browse/KEYCLOAK-6700
https://github.com/keycloak/keycloak/pull/5022
https://issues.jboss.org/browse/KEYCLOAK-6768
https://github.com/keycloak/keycloak/pull/5779
https://issues.jboss.org/browse/KEYCLOAK-6770
https://github.com/keycloak/keycloak/pull/5533
https://issues.jboss.org/browse/KEYCLOAK-8460
https://github.com/keycloak/keycloak/pull/5603
https://issues.jboss.org/browse/KEYCLOAK-6771
https://github.com/keycloak/keycloak/pull/5083
https://github.com/tnorimat

© Hitachi, Ltd. 2019. All rights reserved.

Contents

32

1. Introduction: background and requirements

2. Usage of OSS to meet requirements
• Which OSS should be used?
• Security requirements
• Availability requirements

33© Hitachi, Ltd. 2019. All rights reserved.

<Recap> Requirements for Availability for banking API

Category Description

1 Fault Tolerance • HA configuration

• Can recover automatically

2 Fail Soft/

Fault Avoidance

• Reduce dependencies of each component

Implemented these requirements using 3scale,
collaborating with OSS community

34© Hitachi, Ltd. 2019. All rights reserved.

API Management

HA configuration / Automatic recovery

API
Gateway
(APIcast)

Legacy
Backend

REST API
Server

Applications
(Web App,
Mobile App)

Developer
Portal(porta)

Manager
(porta)

App DevelopersEnd Users

Authentication/
Authorization

Container Platform

OpenShift provides:
• Automatic recovery/Automatic rerouting -> Automatic recovery
• Flexible scaling -> HA configuration

https://www.google.co.jp/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi-yK-SgcbSAhXLbbwKHX-GCXkQjRwIBw&url=https://www.3scale.net/&psig=AFQjCNHqVCzS664xenzCjfyiKJrKWKPbuA&ust=1489031595241729

35© Hitachi, Ltd. 2019. All rights reserved.

Reduce dependencies of each component

apicast-
[staging|production]

system-[master|provider]
/ system-developer

system-redis

system-mysql

system-memcache

system-sidekiq

system-sphinx

backend-redis

backend-cron

backend-worker

backend-listener

zync-database

zync

Keycloak

Client Application API Backend

API Gateway
Authentication / Analytics
Portals
Data sync
External components

36© Hitachi, Ltd. 2019. All rights reserved.

Reduce dependencies of each component

apicast-
[staging|production]

system-[master|provider]
/ system-developer

system-redis

system-mysql

system-memcache

system-sidekiq

system-sphinx

backend-redis

backend-cron

backend-worker

backend-listener

zync-database

zync

Keycloak

Client Application API Backend

API Gateway
Authentication / Analytics
Portals
Data sync
External components

Level 3

37© Hitachi, Ltd. 2019. All rights reserved.

Reduce dependencies of each component

apicast-
[staging|production]

system-[master|provider]
/ system-developer

system-redis

system-mysql

system-memcache

system-sidekiq

system-sphinx

backend-redis

backend-cron

backend-worker

backend-listener

zync-database

zync

Keycloak

Client Application API Backend

Mission Critical components
Non-critical components
External components

Execute jobs

Enqueue jobs

38© Hitachi, Ltd. 2019. All rights reserved.

Reduce dependency (APIcast to Backend)

apicast-
[staging|production]

backend-listener
Authenticate &
Report traffics

when backend-listener is down

We have to consider:

1. how to authenticate API requests

2. how to report traffics

39© Hitachi, Ltd. 2019. All rights reserved.

Reduce dependency (APIcast to Backend)

apicast-
[staging|production]

backend-listener
Authenticate &
Report traffics

We have to consider:

1. how to authenticate API requests
👉 cache the result of authentication and authenticate using cache

-> cannot authenticate newcomers and results to opportunity loss
👉 allow newcomers without cache authentication and with

alternative authentications

2. how to report traffics
👉 cache traffics and report them all together when backend-listener

comes back

Caching policy

Batcher policy

Keycloak Role Check policy, Edge Limiting policy, Token Introspection policy

40© Hitachi, Ltd. 2019. All rights reserved.

How API is called in 3scale 2.3

1) API Request
with token

2) Token Introspection
(Token Introspection policy)

3scale API
Gateway
(APIcast)

REST API
Server

Applications
(Web App,
Mobile App)

Keycloak
3) Access control

(Role Check policy, Edge Limiting policy)

4) Extract necessary information
from access token and set header
(Header policy)

6) API Request with necessary
information in header

5) Reduce dependencies
(Caching policy, Batcher policy)

3scale
Backend

41© Hitachi, Ltd. 2019. All rights reserved.

Summary

• OAuth is recognized as a key technology for banking API systems

• Requirements to be considered around OAuth
• Authentication, Access control, Token management,

Latest standard (OIDC, FAPI)

• Requirements to be considered around Availability
• HA configuration, Dependencies

• Applied OSS (3scale + Keycloak) to achieve them
• Improved with OSS community

• 3scale: enhanced rate limit, access control
• Keycloak: Features required for FAPI
-> Improvements are included in the latest version

• Let’s work with OSS community ! 3scale and Keycloak are great community.

42© Hitachi, Ltd. 2019. All rights reserved.

Trademarks

• Red Hat is a trademark or registered trademark of Red Hat, Inc. in the United States and other

countries.

• OpenShift is a trademark or registered trademark of Red Hat, Inc. in the United States and other

countries.

• WSO2 is a trademark or registered trademark of WSO2 in the United States and other countries.

• OpenID is a trademark or registered trademark of OpenID Foundation in the United States and other

countries.

• GitHub is a trademark or registered trademark of GitHub, Inc. in the United States and other

countries.

• Twitter is a trademark or registered trademark of Twitter, Inc. in the United States and other countries.

• Facebook is a trademark or registered trademark of Facebook, Inc. in the United States and other

countries.

• Other brand names and product names used in this material are trademarks, registered trademarks,

or trade names of their respective holders.

