
1 © NEC Corporation 2019

MinBFT, Hyperledger Lab
Open Source Project to Develop Efficient Consensus Protocol

Open Source Summit Japan 2019

Yuta Namiki

NEC Corporation





Agenda

Introduction

Blockchain and Consensus Protocol

MinBFT Protocol

Approach

Implementation



4 © NEC Corporation 2019

Introduction

▌NEC involved in R&D of blockchain technologies since 2012 

▌This project originates from NEC’s internal research initiative 

▌To discover efficient practical consensus algorithms 

▌To raise awareness about the benefits of TEE for BFT protocols



Hyperledger Labs



6 © NEC Corporation 2019

Hyperledger

▌Project hosted by The Linux Foundation

▌Hyperledger is an open source collaborative effort created to 
advance cross-industry blockchain technologies

▌It is a global collaboration, including leaders in finance, banking, 
Internet of Things, supply chains, manufacturing and 
Technology.

https://www.hyperledger.org/



7 © NEC Corporation 2019

Hyperledger Labs

▌A space for innovation and testing of ideas.

▌Hyperledger Labs will allow teams to experiment with new 
frameworks or new modules without the promise of stable code 
or MVP

▌We have launched MinBFT lab here in August 2018

▌https://github.com/hyperledger-labs/minbft

https://wiki.hyperledger.org/display/labs

https://github.com/hyperledger-labs/minbft


Blockchain and Consensus Protocol



9 © NEC Corporation 2019

Blockchain

▌Bitcoin (2009)

A cryptocurrency

Decentralized: peer-to-peer, without a trusted authority or central server

▌Blockchain

 Introduced as a ledger (a distributed database) in Bitcoin

Generalized not only for cryptocurrencies

Many (open source) implementations

• Fabric, Sawtooth, Iroha (these are in Hyperledger project [1]) , Ethereum [2] etc.

https://en.wikipedia.org/wiki/Bitcoin, https://en.wikipedia.org/wiki/Blockchain
[1] https://www.hyperledger.org/, [2] https://www.ethereum.org/

https://en.wikipedia.org/wiki/Bitcoin
https://en.wikipedia.org/wiki/Blockchain
https://www.hyperledger.org/
https://www.ethereum.org/


10 © NEC Corporation 2019

Blockchain and Consensus Protocol

▌Blockchain involves a consensus protocol

▌Role in Blockchain

Make an agreement

• In Bitcoin, agreement on ownership of a coin to prevent “double-spending”

• In general, agreement on order of transactions, result, ...

▌Requirements in Blockchain

Tolerance for Byzantine failure



11 © NEC Corporation 2019

Byzantine Failure

▌Failure models

Crash failure

• Stops responding

Byzantine failure

• Arbitrary behavior

–Responds with a lie, etc.

• Hard to tolerate

▌Behavior of a malicious attacker in a Blockchain network is 
modeled as Byzantine failure

Blockchain relies on a Byzantine fault tolerance (BFT) protocol



12 © NEC Corporation 2019

BFT Consensus Protocol in Blockchain

▌Proof of Work (PoW)

Used in Bitcoin

Suitable for public blockchains (“open” network like Bitcoin): scalable to 
thousands of nodes, but no finality

▌Practical Byzantine Fault Tolerance (PBFT)

Used in Hyperledger Fabric (version 0.6)

Suitable for private blockchains: (relatively) high performance and finality, but 
limited scalability

Focus on this in my presentation



13 © NEC Corporation 2019

PBFT: Protocol

▌0. A node is elected as the primary node in the network to accept 
client request

▌1. The primary node multicasts PREPREPARE messages to the other 
nodes, in which a sequence number is also assigned to the message 
along with a signature

▌2. Upon reception of the PREPREPARE message, each nodes 
validates the signature

▌3. They multicast a PREPARE message that confirms the 
PREPREPARE message

▌4. A node receives 2f PREPARE messages
that match the PRE-PREPARE message,
multicasts a COMMIT message

▌5. A node receives 2f + 1 COMMIT
messages that the PREPARE message,
it executes the request



MinBFT



15 © NEC Corporation 2019

Road to Efficient Byzantine Fault Tolerance (MinBFT)

▌Limitations in PBFT

Performance

Scalability: scales to few tens of nodes

▌MinBFT proposed by G. S. Veronese et al. in 2013

Leverage a secure hardware to make the protocol efficient so that overcome 
the limitations



16 © NEC Corporation 2019

Intel Software Guard Extensions (SGX)

▌An implementation of the "secure hardware" or Trusted Execution 
Environment (TEE)

▌Introduced with 6th generation Intel Processors (Skylake) in 
2015

▌Provides an isolated environment (“enclave”) for storing sensitive 
data and running codes

Preserve confidentiality and integrity of the data and code

Even software running at higher privilege levels can neither access nor modify 
the data



17 © NEC Corporation 2019

Intel SGX in MinBFT: Contents of Enclave

▌Data

A monotonic counter

A private key

▌Code

 (1) Assigning a sequence number 
to a message

• Increment the counter and assign its 
value to a request in a primary node 

 (2) Signing a message

• Create a prepare message with the 
sequence number and a signature by a 
private key in the enclave

Request

Primary Node

Enclave

Counter

Private key

Seq. no.
(1)

Signature
(2)

Prepare message

To backup nodes
(Signature will be verified)

From a client



18 © NEC Corporation 2019

Intel SGX in MinBFT: Effects (1)

▌Guarantees by Intel SGX

A primary never assign a sequence number n to different requests m1 and m2

• A counter for sequence numbers is in an enclave; it cannot be interfered

A sequence number n assigned to a request m, which is described in a prepare 
message is issued by a primary

• The prepare message is signed and the signing is processed in an enclave (the private key 
is protected)

All backups receive the same combination <m, n> (prevent equivocation)



19 © NEC Corporation 2019

Intel SGX in MinBFT: Effects (2)

▌Backup nodes can trust a sequence number assigned by a 
primary node

 In PBFT, all backup nodes needs to confirm everyone received the same 
sequence number by broadcasting a message in prepare phase

▌MinBFT can omit the phase under the above condition

Confirmation of a sequence number (PBFT)



20 © NEC Corporation 2019

Intel SGX in MinBFT: Effects (3)

▌Reduction of total nodes

MinBFT requires 2f + 1 nodes to tolerate f faulty while PBFT requires 3f + 1 
nodes

• f nodes could be faulty; the system needs to proceed with (n – f) replies

• The (n – f) replies could contain up to f malicious replies

• Therefore a node expect at most ((n – f) – f) = n – 2f correct replies

• In PBFT, this must be majority: n – 2f > f therefore n >= 3f + 1

• In MinBFT, this must be at least one (Intel SGX guarantees every nodes receive same 
requests): n – 2f >= 1 therefore n >= 2f + 1

f = 1

Delay

Proceed with (n – f) replies
because cannot tell failure and delay

Correct replies are at most n - 2f



21 © NEC Corporation 2019

MinBFT: Protocol

▌0. A node is elected as the primary node in the network to accept client 
request

▌1. The primary node broadcasts PREPARE messages to the other nodes, in 
which a sequence number is also assigned to the message along with a 
signature by the secure hardware

▌2. Upon reception of the PREPARE message, each nodes validates the 
signature as well as the sequence number to see if it is incremental

▌3. They broadcast a COMMIT message that confirms the PREPARE message

▌4. A node receives f + 1 COMMIT message, it executes the request

PBFT EBFT



22 © NEC Corporation 2019

PBFT vs. MinBFT

▌Comparison

MinBFT can reduce total number of nodes and communication rounds by 
leveraging a secure hardware

The efficiency increases system throughput

PBFT EBFT

Secure Hardware No Yes

Total Nodes 3f + 1 2f + 1

Communication Rounds 3 2

Communication RoundsTotal Nodes

PBFT: 4 (for f = 1) EBFT: 3

Pre-prepare

Prepare

Commit

Prepare

Commit

EBFT: 2PBFT: 3



Approach

Objectives

Scope

Status



24 © NEC Corporation 2019

Approach

Objectives

▌Pluggable software component

▌Clean design
Modularity

Testability

▌Easy integration
Abstract interfaces

Simple blockchain-like example

▌Best practices
Embedded documentation

Unit and integration tests

Automatic code quality check (linting)

Continuous integration



25 © NEC Corporation 2019

Approach

Scope

▌Core components

Core MinBFT protocol

USIG service

Client functionality

▌External components (sample code)

Authentication

Network connectivity

Configuration

CLI application to run a replica/client instance



26 © NEC Corporation 2019

Approach

Status

▌Experimental development stage

▌Hyperledger Lab

▌Features implemented
 Normal case operation

 SGX USIG

 Simple blockchain-like example

▌Features considered
 View change operation (under development)

 Garbage collection and checkpoints

 USIG enclave attestation

 Faulty node recovery

 Documentation improvement

 Testing improvement



Implementation

Details

Structure

USIG



28 © NEC Corporation 2019

Implementation

Details

▌Language

Most of the code in Go

SGX enclave in C

▌Core dependencies

Go v1.11

golang/protobuf v1.1

 Intel® SGX SDK for Linux v2.4

Tested on Ubuntu 18.04 LTS

▌Licence

Source code under Apache Licence 2.0

Documentation under Creative Commons Attribution 4.0 International License



29 © NEC Corporation 2019

Implementation

Structure

▌api – definition of API between core and external components

▌client – implementation of client-side part of the protocol

▌core – implementation of core consensus protocol

▌usig – implementation of USIG, tamper-proof component

▌messages – definition of the protocol messages

▌sample – sample implementation of external interfaces

 authentication - generation and verification of authentication tags

• keytool – tool to generate sample key set file

 net – network connectivity

 config – consensus configuration provider

 requestconsumer – service executing ordered requests

 peer – CLI application to run a replica/client instance



30 © NEC Corporation 2019

Implementation

USIG

▌Intel ® SGX enclave as tamperproof component

▌USIG-Sign using ECDSA (FIPS 186-3) signature

▌Private key generated inside enclave and protected by SGX

▌Key pair can be sealed and stored permanently

▌Remote attestation can be decoupled from consensus instantiation

▌No dependency on SGX Monotonic Counter (Trusted Platform Service)

▌Ephemeral counter value

▌Ephemeral unique epoch value for each enclave instance

▌USIG identity as key pair combined with epoch value



31 © NEC Corporation 2019

Contributing

▌Any feedback highly appreciated

Questions

Suggestions

Bug reports

Change requests etc.

▌GitHub issue or pull request, as appropriate



32 © NEC Corporation 2019

References

▌Hyperledger Lab: https://github.com/hyperledger-labs/minbft

▌Efficient BFT Paper: https://goo.gl/oQs43M

▌Efficient BFT Proof: https://goo.gl/tMxSrs

▌NEC Activities on Blockchain: https://goo.gl/aDGyZM

▌NEC Laboratories Europe GmbH: http://www.neclab.eu/

https://github.com/hyperledger-labs/minbft
https://goo.gl/oQs43M
https://goo.gl/tMxSrs
https://goo.gl/aDGyZM
http://www.neclab.eu/



