
Wenjing Chu
Senior Director, Open Source and Research
Futurewei Technologies, Inc.

Lessons Learned from Starting an Open 
Source Based Compliance Verification 
Program



Background

• Many industries gain tremendous value from standardization through a 
formal process, often overseen by well established institutions. 

• E.g. 3GPP, IETF, IEEE etc. for the Networking Industry
• As these industries start to adopt Open Source Software that are originally 
developed elsewhere, significant challenges emerge as how to use general 
purpose Open Source while maintaining benefits from standardization. 

• I have been involved in starting a Compliance Verification program since 
2015 within, now known as, LF Networking and here are some tentative 
lessons that, I hope, could be applicable to other industries as well.

• E.g. Financial Services, Automotive, Industrial IoT / Edge
• It’s an ongoing journey...



Applying Open Source to Industries

• The telco industry started embracing virtualization first with NFV 
through ETSI NFV ISG (Industry Specification Group) (2012)

• Network operator driven
• Try not to be a standard body
• Try to limit to a two year term
• Multifaceted and ambitious goals - “transform”
• The term “open source” was never used, but 
“software” was mentioned 32 times, 
“virtualisation”, 86 times, and “Openstack” and 
“OpenFlow” were cited.

October 22-24, 2012 at the “SDN and OpenFlow World Congress”, 
Darmstadt-Germany.



Applying Open Source to Industries

• Two years later, OPNFV, an LF open source community was formed 
by many of the same network operators, participants of ETSI NFV, and 
broader technology providers (telecom/networking, IT, software) 
(2014)



The Beginning of a Compliance Verification Program

• March 2015: I proposed the initial idea to the Board of OPNFV. Formed a Board 
committee to drive the initiative.

• August 2015: Proposed community led bi-annual PlugFest events to bring 
developers together and facilitate integration and testing. First PlugFest was 
hosted in May 2016. Six PlugFests had taken place by now.

• September 2015: A technical project was created to develop/consolidate 
necessary test tools and test suites for use by the program.

• December 2016: The Board approved the program scope and governance.
• October 2017: The community completed its first test spec “2018.01”.
• January 2018: The OPNFV Verified Program (OVP) was launched with the first 

wave of products. Second version followed in September 2018.
• January 2018: Program expanded to ONAP following the formation of LF 

Networking umbrella.
• Today: ONAP is getting ready to launch its Compliance Verification to VNFs 

(Virtual Network Functions), probably soon this year (Check out ONS next month 
in San Jose).



What We Have Created

• An open source framework for verification testing
• A set of upstream test projects that develop quality test 

cases
• A community procedure to approve the official test suites, 

supervised by the TSC and approved by the Governing 
Board

• Software tools for automating all verification steps
• A volunteer committee to review all test results
• A branded mark and a public web site for listing 

certifications

https://verified.opnfv.org/#/



What can we learn 
from this process?



Lesson #1: Have Clarity on Value Proposition

• Surprisingly more difficult than we expected
• Standard and open source communities formulate the “values” in 
different ways

• “Disruptive”, “Transformation”, means the ground rules are unclear
• Can we incrementally bootstrap?



Lesson #2: Adapt to Collaborate in Open Source

• Instead of Specification, code and API
• To accomodate, we “documented” code back to loose “description”
• Avoiding code makes one “illiterate”

• Instead of RFP, Jira, issue, or better yet, pull request
• Put requirements in a format that reaches developers, make them actionable
• Scratch your own itch (e.g. operators can contribute lab qualification tests)

• Upstream, downstream, sidestream, or just confusion?
• Don’t try to repeal laws of economics, engineering, mathematics…



Lesson #3: A Rising Tide Lifts All Boats

• Except those that sink…
• It’s better to have a low bar initially, than no 
expectation at all

• The trusted open process is more important
• The expectation of interoperability and other goals
• The consensus of adhering a community standard

• Unless you are willing to wait for a 5-10 year long 
industry process

• Waterfall model vs. Continuous delivery
• Fully automated test suites allow any time testing with 

minimum friction
• Get on board. Be part of the tide.

Copyright, Ron Kaufman. Used with permission. Ron 
Kaufman is the world’s leading educator and motivator for 
upgrading customer service and uplifting service culture. He 
is author of the bestselling “UP! Your Service” books and 
founder of UP! Your Service. To enjoy more customer 
service training and service culture articles, visit 
UpYourService.com.



Lesson #4: Put the Horse before the Cart

• The Horse: the force unleashed by open source (free to 
innovate)

• The Cart: the goals an industry is trying to achieve via 
open source (e.g. standardization)

• OR,
• The Horse: open source, as I like to shape it to be
• The Cart: the goals (business goals) that I like to achieve

• Philosophizing: does the productive force dominate?
• Time to clarify the value proposition again
• This horse is a mighty force

https://tborash.wordpress.com/2012/10/14/always-pu
t-the-cart-before-the-horse/

tborash: Learning to lead learning

https://tborash.wordpress.com/2012/10/14/always-put-the-cart-before-the-horse/
https://tborash.wordpress.com/2012/10/14/always-put-the-cart-before-the-horse/


Lesson #5: Verify Behavior. Code May Need A 
Different Mechanism.

• Verify behavior, because our “value proposition”, e.g. interoperability, 
is behavior based.

• We can “mandate” but it’s hard to “Verify” code.
• Mandate without verification seems to mean very little

• Code needs a different mechanism. Overloading may not be helpful.
• Commercial products have inherent incentive not to fork to avoid accruing debt
• A community is healthier to always be reminded not to give others reason to 

fork
• Behavior can be tested to “cloud services” as well.



Lesson #6: Verify APIs and Use Cases

• Simple API verification leaves too big a gap
• Common use cases and design patterns are needed to meet the 
objectives. Examples,

• High availability
• Resource allocation, optimization, migration
• Stress load
• Security best practice
• Performance characterization (predictability)
• Networking diversity
• Operational procedures

• This is where industry specialization can be adopted



Lesson #7: “Free as in Freedom” Is Not Enough

• Freedom to propose, code, test any part of the system behavior 
characteristics

• Having a freedom and effectively exercising the freedom are different 
things

• Who has a stake in it?
• Is it a present itch?
• Deployments?
• Tragedy of the commons.
• Skin in the game.



Lesson #8: Keep Calm and Carry On

• There will be many contentious 
moments and low points along 
the way.

• It could take a long time.
• It’s an ongoing journey...



“If you want to 
go quickly, go 
alone. If you 
want to go far, 
go together.”

African Proverb




