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Background

• Many industries gain tremendous value from standardization through a 
formal process, often overseen by well established institutions. 

• E.g. 3GPP, IETF, IEEE etc. for the Networking Industry
• As these industries start to adopt Open Source Software that are originally 
developed elsewhere, significant challenges emerge as how to use general 
purpose Open Source while maintaining benefits from standardization. 

• I have been involved in starting a Compliance Verification program since 
2015 within, now known as, LF Networking and here are some tentative 
lessons that, I hope, could be applicable to other industries as well.

• E.g. Financial Services, Automotive, Industrial IoT / Edge
• It’s an ongoing journey...



Applying Open Source to Industries

• The telco industry started embracing virtualization first with NFV 
through ETSI NFV ISG (Industry Specification Group) (2012)

• Network operator driven
• Try not to be a standard body
• Try to limit to a two year term
• Multifaceted and ambitious goals - “transform”
• The term “open source” was never used, but 
“software” was mentioned 32 times, 
“virtualisation”, 86 times, and “Openstack” and 
“OpenFlow” were cited.

October 22-24, 2012 at the “SDN and OpenFlow World Congress”, 
Darmstadt-Germany.



Applying Open Source to Industries

• Two years later, OPNFV, an LF open source community was formed 
by many of the same network operators, participants of ETSI NFV, and 
broader technology providers (telecom/networking, IT, software) 
(2014)



The Beginning of a Compliance Verification Program

• March 2015: I proposed the initial idea to the Board of OPNFV. Formed a Board 
committee to drive the initiative.

• August 2015: Proposed community led bi-annual PlugFest events to bring 
developers together and facilitate integration and testing. First PlugFest was 
hosted in May 2016. Six PlugFests had taken place by now.

• September 2015: A technical project was created to develop/consolidate 
necessary test tools and test suites for use by the program.

• December 2016: The Board approved the program scope and governance.
• October 2017: The community completed its first test spec “2018.01”.
• January 2018: The OPNFV Verified Program (OVP) was launched with the first 

wave of products. Second version followed in September 2018.
• January 2018: Program expanded to ONAP following the formation of LF 

Networking umbrella.
• Today: ONAP is getting ready to launch its Compliance Verification to VNFs 

(Virtual Network Functions), probably soon this year (Check out ONS next month 
in San Jose).



What We Have Created

• An open source framework for verification testing
• A set of upstream test projects that develop quality test 

cases
• A community procedure to approve the official test suites, 

supervised by the TSC and approved by the Governing 
Board

• Software tools for automating all verification steps
• A volunteer committee to review all test results
• A branded mark and a public web site for listing 

certifications

https://verified.opnfv.org/#/



What can we learn 
from this process?



Lesson #1: Have Clarity on Value Proposition

• Surprisingly more difficult than we expected
• Standard and open source communities formulate the “values” in 
different ways

• “Disruptive”, “Transformation”, means the ground rules are unclear
• Can we incrementally bootstrap?



Lesson #2: Adapt to Collaborate in Open Source

• Instead of Specification, code and API
• To accomodate, we “documented” code back to loose “description”
• Avoiding code makes one “illiterate”

• Instead of RFP, Jira, issue, or better yet, pull request
• Put requirements in a format that reaches developers, make them actionable
• Scratch your own itch (e.g. operators can contribute lab qualification tests)

• Upstream, downstream, sidestream, or just confusion?
• Don’t try to repeal laws of economics, engineering, mathematics…



Lesson #3: A Rising Tide Lifts All Boats

• Except those that sink…
• It’s better to have a low bar initially, than no 
expectation at all

• The trusted open process is more important
• The expectation of interoperability and other goals
• The consensus of adhering a community standard

• Unless you are willing to wait for a 5-10 year long 
industry process

• Waterfall model vs. Continuous delivery
• Fully automated test suites allow any time testing with 

minimum friction
• Get on board. Be part of the tide.
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is author of the bestselling “UP! Your Service” books and 
founder of UP! Your Service. To enjoy more customer 
service training and service culture articles, visit 
UpYourService.com.



Lesson #4: Put the Horse before the Cart

• The Horse: the force unleashed by open source (free to 
innovate)

• The Cart: the goals an industry is trying to achieve via 
open source (e.g. standardization)

• OR,
• The Horse: open source, as I like to shape it to be
• The Cart: the goals (business goals) that I like to achieve

• Philosophizing: does the productive force dominate?
• Time to clarify the value proposition again
• This horse is a mighty force

https://tborash.wordpress.com/2012/10/14/always-pu
t-the-cart-before-the-horse/

tborash: Learning to lead learning

https://tborash.wordpress.com/2012/10/14/always-put-the-cart-before-the-horse/
https://tborash.wordpress.com/2012/10/14/always-put-the-cart-before-the-horse/


Lesson #5: Verify Behavior. Code May Need A 
Different Mechanism.

• Verify behavior, because our “value proposition”, e.g. interoperability, 
is behavior based.

• We can “mandate” but it’s hard to “Verify” code.
• Mandate without verification seems to mean very little

• Code needs a different mechanism. Overloading may not be helpful.
• Commercial products have inherent incentive not to fork to avoid accruing debt
• A community is healthier to always be reminded not to give others reason to 

fork
• Behavior can be tested to “cloud services” as well.



Lesson #6: Verify APIs and Use Cases

• Simple API verification leaves too big a gap
• Common use cases and design patterns are needed to meet the 
objectives. Examples,

• High availability
• Resource allocation, optimization, migration
• Stress load
• Security best practice
• Performance characterization (predictability)
• Networking diversity
• Operational procedures

• This is where industry specialization can be adopted



Lesson #7: “Free as in Freedom” Is Not Enough

• Freedom to propose, code, test any part of the system behavior 
characteristics

• Having a freedom and effectively exercising the freedom are different 
things

• Who has a stake in it?
• Is it a present itch?
• Deployments?
• Tragedy of the commons.
• Skin in the game.



Lesson #8: Keep Calm and Carry On

• There will be many contentious 
moments and low points along 
the way.

• It could take a long time.
• It’s an ongoing journey...



“If you want to 
go quickly, go 
alone. If you 
want to go far, 
go together.”

African Proverb




