
THE OPEN SOURCE NETWORK

1

FRINX – THE OPEN SOURCE NETWORK

2

“Deliver real and sustainable productivity gain
by automating processes required to build,

operate and grow communication networks.”

FRINX VISION STATEMENT

NETWORK PROVISIONING SOLUTION WITH FRINX ODL

3

FRINX TYPICAL USE CASES
• Overall Network Device Automation, including but not limited to

• LACP link bundles
• BGP peering services
• Business internet
• EVPN
• L2VPN (VLL, VPLS)
• L3VPN
• LLDP topology collection services
• DOCSIS
• Amazon VPCs & Direct connect (interface & peering)

• Network Inventory and Change Management
• Network inventory (heterogeneous platform data transformed to common data model)
• Operating software management
• Device configuration

• Workflow management;
• Network devices
• Customer care tools
• Subscriber provisioning tools
• Billing systems

FRINX – THE OPEN SOURCE NETWORK

4

FRINX STRATEGY

• Develop a controller and agent to connect to customer network devices and provide an
upstream network API for our customers.

• Use cloud native software architectures to provide workflow and inventory solutions that
control one or many customers network APIs.

• Develop a thriving community to grow our open source device library supporting all device
vendors.

• Partner with industry leaders to deliver a multi-tenant, massively scalable cloud based
platform for communications and connectivity service providers.

FRINX – THE OPEN SOURCE NETWORK

5

CODE THAT WE WORK ON

• FRINX UniConfig, with FRINX ODL (for controllers) and Lighty.io (for agents) and deploy with
large multi-national customers

• FRINX Open Source device library

• FRINX Machine, a cloud native workflow product based on Netflix Conductor and
Elasticsearch

• FRINX contributions to the ODL project (NETCONF, GBP)

6

FRINX UNICONFIG

FRINX UNICONFIG ECOSYSTEM

FRINX UniConfig Layer

UniConfig Node Manager

FRINX Unified Layer

Southbound Layer

SSH / TelnetNETCONF

CLI, NETCONF ...
Multivendor networks

RESTconf or
NETCONF

Go and Python client libraries
generated by Swagger

FRINX UNICONFIG NETWORK AUTOMATION

FRINX UniConfig Layer

UniConfig Node Manager

FRINX Unified Layer

Southbound Layer

SSH / TelnetNETCONF

CLI, NETCONF ...
Multivendor networks

RESTconf or
NETCONF

Translation Units

NETCONF

Translation Units

CLI

UniConfig
Native

Unstructured data
Any vendor YANG model

YANG

FRINX MACHINE - NETWORK AUTOMATION

FRINX UniConfig Layer

UniConfig Node Manager

FRINX Unified Layer

Southbound Layer

SSH / TelnetNETCONF

CLI, NETCONF ...
Multivendor networks

RESTconf or
NETCONF

Translation Units

NETCONF

Translation Units

CLI

UniConfig
Native

FRINX Workflow & Inventory

REST Service &
Workflow APIs

FRINX UniConfig

10

Open Source Device Library

OPEN SOURCE DEVICE LIBRARY

11

OSS DEVICE LIBRARY

• Support for stateful translation between CLI (semi-unstructured data) and YANG models

• CLI models are sequence aware. UniConfig service graph is implemented in Create, Read,
Update & Delete operations for CLI configs. Required for rollback logic.

• Support for stateful translation between YANG models (e.g. private YANG models translated
into OpenConfig and back)

• Stateful means that device configuration is stored in structured format (YANG) in
operational and config data stores. This enables UniConfig operations (sync-from-network,
diff between config and operational, commit to network, rollback & snapshots) on all device
configurations that are mounted in UniConfig.

• Scales up to thousands of devices per controller (with 1000s of lines of config per device)

FRINX UniConfig

12

UniConfig Native

UNICONFIG NATIVE

13

UNICONFIG NATIVE

• Read and write to and from devices using their native YANG data models (e.g. Cisco YANG
models, JunOS Yang models, CableLabs YANG models …)

• Use the same features on native YANG models as with regular UniConfig OpenConfig models
(e.g. sync-from-network, commit, checked-commit, calculate-diff, replace-config-with-
operational, rollback, create and load snapshots)

• Works along side UniConfig (some devices can be mounted as UniConfig native, while some
devices can be mounted as UniConfig at the same time)

• Available starting with the FRINX ODL 4.2.0 release (April 2019)

• Loading and transformation of YANG models from devices happens on-the-fly. No pre-
compilation required.

• Tested scale data point: 1120 devices with 4700 lines of configuration per device, require 3GB
of heap

FRINX UniConfig

14

FRINX SOLUTIONS

FRINX UNICONFIG FRAMEWORK

15

FRINX UniConfig Framework – A Layered
Architecture
FRINX ODL service components uses layered design where functionality of
upper layers depends on the functionality of the layer underneath. Each layer
thus provides a higher level of abstraction from the network elements.
Applications are allowed to utilize any of the layers in the system.
There are 3 main layers represented by these components (from top to
bottom):

• Uniconfig layer
• Unified layer
• Southbound layer (NETCONF mountpoint, CLI mountpoint with

translation units)

The Datastore is a component in ODL which stores structured data described
by YANG models. There are two separate Datastores:

• Config datastore (CONF DS) - contains intended state (intended device
configuration). This datastore is persistent and external (outside ODL)
applications have read/write access.

• Operational datastore (OPER DS) - contains actual state (actual device
configuration). OPER DS is not persistent and external applications have
read only access.

Mountpoints in ODL represent communication interfaces with an external
system. Mountpoints are usually registered under a node in a topology.& Native Vendor YANG Models

FRINX UNICONFIG & UNICONFIG NATIVE

16

Business application using UniConfig

Device abstraction provides API to create, read, update
and delete device configurations in common
OpenConfig Format. Config data store contains
intended configurations of all network devices, while
operational data store contains all current
configurations. Network transaction capabilities provide
commit, snapshot and rollback functions across one or
multiple devices.

Unified layer provides the ability to combine devices
connected with different transport protocols and different
models into one common representation. Includes open
source device library (YANG <-> YANG) and the ability to
interact with vendor YANG models (UniConfig native)

Southbound layer provides connectivity to devices via
multiple protocols (NETCONF, SSH, Telnet, …). Includes
open source device library (YANG <-> CLI)

& Native Vendor YANG Models

UNICONFIG REMOTE PROCEDURE CALLS

17

OPERATIONS

• UniConfig Manager

• sync-from-network

• commit

• checked-commit

• calculate-diff

• replace-config-with-
operational

• Dry-run Manager

• dry-run – works only with CLI
nodes

• Snapshot Manager

• create-snapshot

• delete-snapshot

• replace-config-with-snapshot

18

Machine

FRINX MACHINE - NETWORK AUTOMATION

FRINX UniConfig Layer

UniConfig Node Manager

FRINX Unified Layer

Southbound Layer

SSH / TelnetNETCONF

CLI, NETCONF ...
Multivendor networks

RESTconf or
NETCONF

Translation Units

NETCONF

Translation Units

CLI

UniConfig
Native

Workflow & Inventory

REST Service &
Workflow APIs

FRINX MACHINE - NETWORK AUTOMATION

CLI, NETCONF ...
Multivendor networks

RESTconf or
NETCONF

Workflow & Inventory

REST Service &
Workflow APIs

FRINX UniConfig Layer

UniConfig Node Manager

FRINX Unified Layer

Southbound Layer

SSH / TelnetNETCONF

Translation
Units

NETCONF

Translation Units

CLI

UniCo
nfig

Native

Stateful Stateless

!-services

FRINX MACHINE – COMPONENTS

Inventory UI Workflow UI UniConfig UI

FRINX ODL
Distribution

(includes
UniConfig)

FRINX ODL
Distribution

(includes
UniConfig)

FRINX UniConfig
REDIS / Dynomite

REDIS / Dynomite
REDIS / Dynomite
(workflow state)

Elasticsearch
Elasticsearch

Elasticsearch
(Inventory,

time series data)

Conductor Server
Conductor Server

Conductor Server
(workflow graphs)

NetInfra micro services
NetInfra micro services

Micro services
(task logic)

REST API

User Interface

Execution Logic

State and/or
Transformation

REST API

Other Systems
(e.g. IPAM,
JBPM, CRM,
Ticketing,

Legacy DB, …)

Inventory Workflow Infrastructure Control

Infra services
Infra services

Infra services

FRINX NETWORK AUTOMATION

Key Solution Tenets

• Use existing solutions wherever available (OpenDaylight, Elasticsearch,
Conductor, Ansible, Terraform, …)

• Provide stateful and stateless interaction with network infrastructure

• Provide a framework for components and how they interact

• Provide out-of-the-box workflows & services

• Provide open source device library

• Provide customer access to all source code

• Provide solution support for enterprises and operators

• FRINX Machine fits in 6 GB RAM / 30GB disk and installs and starts in a few
minutes

FRINX MACHINE

23

User Interface

24

FRINX Workflow UI

• Users can build on a library of workflows
that ship with FRINX Machine to create
their own automation workflows.

• Workflows can be started via REST
interface or GUI.

• Workflows can be created without
writing code

• Workflows can integrate with other
systems (Ticketing, E-mail, Slack, …)

FRINX MACHINE UI

FRINX Workflow UI

FRINX Workflow UI

FRINX Machine Workflows – Edit Workflow

FRINX Machine Workflows – Edit Workflow

FRINX Machine Workflows – Detailed Execution Information

30

FRINX Workflow UI provides detailed task information
(input and output data per task, failure reason, time stats)

31

FRINX Workflow UI provides detailed stats about task and
workflow execution and status

32

FRINX Inventory UI

33

FRINX UniConfig Console

34© 2019 frinx.io

For more details about Frinx please
contact frinx@frinx.io

