Automating Service Self-Healing and Security Management

Davide Cherubini
Cloud & Automation CoE
ONAP Roadmap

- R1 AMSTERDAM: December 2017
- R2 BEIJING: June 2018
- R3 CASABLANCA: December 2018
- R4 DUBLIN: June 2019
ONAP & Openness

- Modularity
- Flexibility (seamlessly integrate with existing deployment & 3rd party systems)
- Promote adoption of standard interfaces and APIs - internal and external
- Avoid proprietary interfaces
- Consistent implementation
Vodafone Contributions to ONAP

ONAP R3
Casablanca
Dec 2018

CCVPN Use Case
- cross-technology
- cross-domain
- cross-operator
- E2E Service fulfillment and assurance

ONAP R4
Dublin
June 2019

CCVPN Extension
- 5 sub-use cases
 - (MP2MP, VAS+AI, DR, L0/L1)

VSP Compliance [SDC]
- VNF/CNF Certification + Testing
CCVPN Use Case

Integration of 3rd party SDNC
ONAP Security Considerations

• Enhancing ONAP security
 – Projects (security by design)
 – CII badging

• ONAP used to enhance Service security
Possible Service Security Scenarios for ONAP
ONAP ↔ Ericsson ESM Demo

- 3 Use Cases demonstrated
 1. Misconfiguration detection
 2. Threat detection & Self-Healing
 3. Forensics & Root Cause Analysis
Automating service self-healing and security management

Open Networking Summit
North America
April 2019

Kari-Pekka Perttula
Ericsson Security Solutions
2019-04-05
Assets at risk
Mobile network threat vectors

- User Equipment
- OSS/BSS
- Access Network
- Core Network
- Other Networks

Traffic types:
- Management Traffic
- Control Signaling
- User Payload
Most common issues resulting in security breach or incident

- Security policies are not enforced or monitored
- Current operational procedures prone for mistakes
- Lack of hardening
 Insecure configurations of the network
- Lack of visibility, control and continuous monitoring

“Through 2020, 80% of cloud breaches will be due to customer misconfiguration, mismanaged credentials or insider theft, not cloud provider vulnerabilities.”

-Gartner
Service provider security challenges

- Lack of end-to-end security visibility
- Security and privacy compliance
- Limited ability to detect and respond to threats
- Manual processes are not scalable

Privacy

- Untrusted identities

No end-to-end view of security status

- Malicious devices
- False base stations
- Signaling vulnerabilities

Network resilience

- Dynamic and distributed networks
- Lack of automation in security

OPEX

- ISO 27001 and GDPR compliance

Manual processes are not scalable
Journey towards intelligent security management

- Automated threat detection with ML/AI based security analytics
- Automated security policy configuration & compliance monitoring
- Adaptive security and threat intelligence

Static
- Manual security baseline configuration & audits

Dynamic
- Cognitive
 - Automated threat detection with ML/AI based security analytics

Intelligent
Security management challenges with ONAP

— Security focus in the ONAP community is currently on the platform security and selected VNF use cases

— ONAP lacks security framework and APIs, that would facilitate connection to external security analytics and management tools

— These are needed to automate security operations use cases both for the NFs and the ONAP platform
Summary

— Security management is a challenge in current networks – lack of control and visibility

— Networks are becoming dynamic and distributed, at the same time new threats continuously emerge – manual security processes are not scalable and effective

— Automation of security use cases is an imperative for intelligent security management