
Cloud Native Edge App & NFV Stack
(Goal – deploy all kinds of workloads – VNFs, CNFs, VM-Apps, Container-Apps, functions)

Srinivasa Addepalli (Srinivasa.r.addepalli@intel.com)
Ravi Chunduru (ravi.chunduru@Verizon.com)

mailto:Srinivasa.r.addepalli@intel.com

Agenda

• Why Cloud native – An operator/usecase view

• Cloud native NFV stack needs

• NFV specific requirements

• Open source projects that make Cloud native NFV stack real

• Cloud native end-to-end NFV stack – One opinionated stack

• Q&A

© Verizon 2019, All Rights Reserved. Information contained herein is provided AS IS and subject to change without notice.

All trademarks used herein are property of their respective owners.

Requirements

VNS

Edge

One Cloud Native

Resource Orchestrator

Zero Touch Activation

Seamless Developer Experience –

Debugging, Log Aggregation,

Performance Monitoring

Operations at Scale

Actionable Insights, Capacity

Management

Host Dynamic Workloads

© Verizon 2019, All Rights Reserved. Information contained herein is provided AS IS and subject to change without notice.

All trademarks used herein are property of their respective owners.

Approaches - Resource Management

“Kubernetes replacing

Openstack”

“Kubernetes Running in a VM

Powered by Openstack”

“Co-Existing Kubernetes and

Openstack”

 Run Workloads with Kubernetes

independent of Openstack

 Good Workload performance

 Easy to Support

 Lacks Unified View of System

Resources causes problems with

planning

 Operational challenges to debug

any performance issues

 Quick extension to Openstack

Ecosystem

 Fully featured multi tenancy and

Security

 Lacks Performance with

Workloads

 Additional workflows to manage

the VMs that are hosting

Kubernetes

 One stack to manage VMs and

Containers

 Workloads take complete

advantage of HW accelerators,

Smart NICs etc.,

 Offer Integrated VNS solutions

with Container Workloads

 Need improved Networking

capabilities like in Openstack

(SFC, Provider Networks,

Segmentation)

Transformation journey (to Kubernetes & Cloud native)

Compute nodes

VNF VNF

O
p

en
 S

ta
ck

Compute nodes

CNF MS

K
u

b
er

n
et

es
Site

Two different resource orchestrators
Compute nodes are divided

Compute nodes

VNF

O
p

en
 S

ta
ck

Site

Ku
b

er
n

et
es

VMs

CNFs

MS

Openstack for VNFs and VMs
K8S on set of VMs.

Compute nodes

VNF

K
u

b
er

n
et

es

Site

CNF

CNF MS

MS

Run all on bare-metal, one resource
orchestrator

K8s based control plane uses less
number of resources. Suitable for

edges even with one server. All Cloud
native. Yet support VNFs, CNFs, Micro

Services and functions (all types of
workloads)

VM

Introduction of K8S based Micro-service deployment – One example scenario

Resident 1 Applications (Micro-Services)

POD POD POD
Internet

Hardware (Multiple Nodes)

BGP
Router

BGP LB

BGP LB

BGP LB

Ingress
(L7 LB)

Ingress
(L7 LB)

Ingress
(L7 LB)

K8S Cluster

K8S Master

Virtual Network

Resident 2 Applications (Micro-Services)

POD POD POD

How does NFV based deployment with Cloud-native applications look like (Taking
SDWAN with security NFs as an example)

Internet

Hardware (Multiple Nodes)

K8S Cluster

K8S Master

EXT
RouterSDWAN

VNF

Provider
Network 2

IPS/WAF
CNF

Virtual
Network2

Firewall
VNF (with BGP router)

Virtual
Network1

Default Virtual network

resident 1 Applications (Micro-Services)

POD POD POD

BGP LB
Ingress
(L7 LB)resident 2 Applications (Micro-Services)

POD POD POD

Ingress
(L7 LB)
Ingress
(L7 LB)

BGP LBBGP LB

Provider network 1

Corp
networks

M1

M2

M3

Traffic flow 1 – From internal machines to Internet

Internet

Hardware (Multiple Nodes)

K8S Cluster

K8S Master

EXT
RouterSDWAN

VNF

Provider
Network 2

IPS/WAF
CNF

Virtual
Network2

Firewall
VNF (with BGP router)

Virtual
Network1

Default Virtual network

resident 1 Applications (Micro-Services)

POD POD POD

BGP LB
Ingress
(L7 LB)resident 2 Applications (Micro-Services)

POD POD POD

Ingress
(L7 LB)
Ingress
(L7 LB)

BGP LBBGP LB

Provider network 1

Corp
networks

M1

M2

M3

Traffic flow2 – Communication between Micro-Services and Internet

Internet

Hardware (Multiple Nodes)

K8S Cluster

K8S Master

EXT
RouterSDWAN

VNF

Provider
Network 2

IPS/WAF
CNF

Virtual
Network2

Firewall
VNF (with BGP router)

Virtual
Network1

Default Virtual network

resident 1 Applications (Micro-Services)

POD POD POD

BGP LB
Ingress
(L7 LB)resident 2 Applications (Micro-Services)

POD POD POD

Ingress
(L7 LB)
Ingress
(L7 LB)

BGP LBBGP LB

Provider network 1

Corp
networks

M1

M2

M3

Cloud native NFV stack – Requirements Summary

Network requirements

Co-existence of Network functions and
applications

Network Functions as VNFs and CNFs

Multiple Virtual networks

Provider networks

Network function chaining – Inserting new
functions dynamically and auto
reconfiguration

Performance requirements

High throughput with respect to PPS & bps

Low latency and low jitter

Performance determinism (even with noisy neighbors)

Generic requirements

Network Service Orchestration at a central locations across multiple K8S clusters & Openstack locations

Multi-residency support (soft isolation)

Telemetry & Monitoring

Cloud Native NFV provisioning system that deploys not only K8S components, but also NFV related components

Security

Attestation & Verifications of infrastructure

Private key and password protection, IP protection

Network requirements – Open source projects addressing them

Requirements:
Multiple Virtual networks
Dynamic creation/termination
Static service function chaining
Provider network support
Programmable (for future extendability)

Kubelet
Virtlet

Multus CNI

Flannel OVN-Multi CNI SRIOV-NIC CNI

Multus:
Higher level CNI and associated CRD logic to allow creation of
multiple networks using various CNIs
Founded by Intel: https://github.com/intel/multus-cni

OVN Multi CNI and associated network watcher (for K8S)
Enables multiple OVN based networks and enables PODs/VNFs to sit
on multiple virtual networks.
Founded by Intel in OPNFV:
https://gerrit.opnfv.org/gerrit/gitweb?p=ovn4nfv-k8s-plugin.git;a=summary

Route Controller (for static SFC): Being conceptualized
Dynamic SFC: TBD (Candidates: https://networkservicemesh.io/, OVNSFC)

Requirements:
Co-existence of VMs and containers
VNF and CNF support
Sharing of compute nodes
K8S for VNFs/CNFs/Micro-services
Leverage VNFs that are developed for Openstack

Kubelet

CRI Proxy

Virtlet Docker

K8S API Server

Virt-controller

Virt-handler (Daemon-set)

Virt-launcher (part of each
VM POD)

Virtlet based
kubevirt based

VM/VNF based workload support in K8S
Virtlet:
https://github.com/Mirantis/virtlet
https://github.com/Mirantis/criproxy

Kubevirt
https://github.com/kubevirt

https://github.com/intel/multus-cni
https://gerrit.opnfv.org/gerrit/gitweb?p=ovn4nfv-k8s-plugin.git;a=summary
https://networkservicemesh.io/
https://github.com/Mirantis/virtlet
https://github.com/Mirantis/criproxy
https://github.com/kubevirt

Performance requirements – Container networking acceleration
Open source projects addressing them

Requirements:
High throughput for packet processing applications

Kubelet
Virtlet

Multus CNI

Flannel OVN-Multi CNI SRIOV-NIC CNI

SRIOV-NIC CNI
Two modes:
- SRIOV NIC VFs are directly attached to VNF/CNF.
- SRIOV NIC VFs are attached to host Linux kernel and then the

connection through veths.
https://github.com/intel/sriov-cni

VNF/CNF (with DPDK)

SRIOV Enabled NIC HW

Kubelet
Virtlet

Multus CNI

Flannel OVN-Multi CNI
OVS-DPDK CNI

Virtio-user

OVS-DPDK CNI
Instead of vEth pair of connecting virtual ports, use familiar
virtio-user/vhost-user interface to connect to OVS-DPDK based
virtual switch.

Useful only if all the workloads in the node are packet processing
based applications as this can reduce the performance of other
workloads that don’t receive packets via virto.

- https://github.com/intel/userspace-cni-network-plugin

VNF/CNF (with DPDK) and virtio-user

https://github.com/intel/sriov-cni
https://github.com/intel/userspace-cni-network-plugin

Performance requirements – Container networking acceleration
with smartNICs

Requirements:
High throughput for packet processing applications
Performance determinism
Network namespace offloads (TCP session search etc…)

Kubelet
Virtlet

Multus CNI

Flannel OVN-Multi CNI

Kubernetes friendly smartNIC

OVN uses OVS which can be offloaded to smartNIC.
SmartNICs exposing virtio interface can send packets to
VNFs/CNFs that are packet processing based
OVN with SmartNIC to enable normal containers that are
not packet processing based.
Enable VNF/CNFs that leverage AF-XDP.
Open source: Community help

VNF/CNF (with DPDK)
With virtio-user

SmartNICs that expose vhost-user and VFs

VNF/CNF/Micro service
using vEth

VNF/CNF with
AF-XDP

Performance requirements – Compute related open source projects

Requirements Project Descriptions

Performance determinism even
when there are noisy neighbors
(using affinity and isolation of cores)

https://github.com/intel/CPU-
Manager-for-Kubernetes
CMK – CPU Manager for Kubernetes

• If high performance PODs cores
also can be dedicated.

• Also, it enables affining the shared
cores

Performance determinism by
reducing paging via hugepages

https://github.com/kubernetes/kube
rnetes/pull/50859 (WIP - Hugepages
feature)
https://github.com/kubernetes/kube
rnetes/pull/50072 (WIP – Hugetlbfs
via volume plugin)

• Accounting of huge pages
• Relinquishing huge pages upon

unexpected termination

Placement of VNFs/CNFs/Micro-
services based on their hardware
requirements

github.com/kubernetes-
incubator/node-feature-discovery
(Node feature discovery)

• Discovers the hardware
capabilities on each node and
advertises via labels vs nodes.

• Allows VNF/CNF description to
have hardware requirements via
lables.

https://github.com/intel/CPU-Manager-for-Kubernetes
https://github.com/kubernetes/kubernetes/pull/50859
https://github.com/kubernetes/kubernetes/pull/50072
https://github.com/kubernetes-incubator/node-feature-discovery

Performance requirements – Accelerator related open source projects (As
Device plugins)

Requirements Project Descriptions

Improve performance of Crypto and
compression operations of
VNFs/CNFs/Micro-services by
leveraging hardware

https://github.com/intel/intel-
device-plugins-for-
kubernetes/tree/master/cmd/qat_pl
ugin
QAT - Plugin

• QAT Device Plugin discovers QAT
cards on a node and the number
of VFs configured, advertises this
to the node and allocates VFs
based on workload resource
requests

Improve AI/Media performance
using FPGA and GPU

https://github.com/intel/intel-
device-plugins-for-
kubernetes/tree/master/cmd/fpga_p
lugin (FPGA)

https://github.com/intel/intel-
device-plugins-for-
kubernetes/tree/master/cmd/gpu_pl
ugin (GPU)

• Make GPU/FPGA available to
VNFs/CNFs/Micro-Services as and
when they request them.

https://github.com/intel/intel-device-plugins-for-kubernetes/tree/master/cmd/qat_plugin
https://github.com/intel/intel-device-plugins-for-kubernetes/tree/master/cmd/fpga_plugin
https://github.com/intel/intel-device-plugins-for-kubernetes/tree/master/cmd/gpu_plugin

Generic requirements – Create K8S Cluster with all NFV related SW

Requirements:
Install/Provision all software needed for NFV

KRD (Deploy Kubernetes for NFV) – Being done in
ONAP
• Set of Ansible scripts
• Enhanced Kubespray
• Installs/configures following software:

• Kubernetes
• NFD (Node feature discovery)
• Flannel, OVN, OVN4K8SNFV (CNI & Watcher)
• ISTIO
• Mutlus
• Virtlet
• Telemetry – CollectD, Prometheus
• Ceph/Rook
• kNative
• Future: Kubevirt, CMK, SRIOV-NIC CNI, FPGA,

GPU plugs, Route configurator etc…

https://github.com/onap/multicloud-k8s

Requirements:
Bare Metal provisioning (with Linux OS and system SW)

Digital Rebar/Ironic (Being explored)
• API Driven server provisioning
• Golang based
• DHCP/PXE/TFTP based provisioning
• Workflow system

https://github.com/digitalrebar/provision

https://github.com/onap/multicloud-k8s
https://github.com/digitalrebar/provision

Generic requirements – Orchestrator to Orchestrators (ONAP)

Site
(With K8S for both

VMs and Containers)

ONAP

Site
(With Openstack VIM)

AWS
EKS

GCP
GKE

Azure
AKS

K8S Plugin

K8S Plugin in ONAP (WIP for R4)
• Orchestrate workloads

(VNF/CNF/Micro-Services) across
multiple sites.

• Orchestrate network services that
span across multiple sites

• Day0 configuration profiles
• Day2 configuration (Incremental

configuration)

TBD:
• Hardware Platform Awareness
• Daemon set for multiple locations.
• Bulk deployment
• DAG based flow
• VNFFG and/or NSM integration

https://github.com/onap/multicloud-k8s

https://github.com/onap/multicloud-k8s

Cloud Native NFV Stack – Putting it all together

Hardware

S1 S2 S3

Host Operating System

Ubuntu RH Clear

Tuned for eBPF and XDP
at vEth

Kubernetes
K8S App Components
ISTIO MetalLB

gVisor Flannel,OVN

CollectD Prometheus

Virtlet OpenNESS

NFV Specific components

Multus SRIOVNIC

CMK Hugepg mgr

NFD Numa Mgr

QAT

OVN4K8SNFV

SFC Mgr

OVN4SFC

RouteMgr

ONAP

MC – K8S Plugin Service
(Instantiation, Day0, Day2 config)

Inter-Site Mgr Config Mgr

Resident Mgr Edge Mgr

K8S HPA PaaS

Use cases/Apps

Analytics as a
Service

SDWAN EdgeXFoundry

Infrastructure Provisioning & Configuration

KUD (with Cluster API)

Digital Rebar/ironic (or
equivalent) for bare-metal

provisioning)

Ceph/
Rook

knative

Global ZTP (Zero Touch
Provisioning) system

Summary

• Kubernetes (with its minimal footprint) is becoming choice of site orchestrator in Edges.

• Quite a bit of work going on in Open source (LFN, CNCF) to make K8S choice for network
functions
- Virtlet, KubeVirt for VM based Network functions.

- OVN with OVN4K8SNFV for multiple and dynamic networks.

- Effort to bring performance of VNFs and CNFs as physical functions with SRIOV-NICs, SmartNICs

- Performance determinism using CPU affinity/isolation, NUMA and Huge page table support

- Multiple device plugins to expose various HW acceleration and security features.

• Single Orchestrator for VNFs/CNFs and Micro-services

• Integration is the key

• ONAP, OPNFV and Akraino will play a key role.

• Help the community to make Cloud native NFV real.

Q&A

