
Introduction to service mesh
with Istio and Kiali

Alissa Bonas

mikeyteva

Evolution of application
architecture

How did we get to service mesh?

Monolith application

Single unit of
executable

=
Application

=
Single process

Application modules

Application

Handle
HTTP

requests

Data
processingUI

Alerts

Multiple processes

Application
UI

Data
processing

Alerts

Handle
HTTP

requests

Microservices

Language agnostic

Scaled separately

Upgraded separately

A shift in Application Packaging
and Runtime

Containerizing an app

Run multiple containers

● Run many containers on multiple hosts

● Scale - manage several instances (replicas)

of the same container

● Manage a container based environment

Orchestrate containers

Container orchestration platforms

Kubernetes
OKD

(Openshift)

 Kubernetes building blocks (some…)
● Pod - a group of one or more containers, with shared

storage/network

● Deployment - manages pod definition and defines replicas
of pods

● Service - an abstraction, an access point to a set of Pods

○ Sometimes called a microservice

Replica 3

Microservices - the Kubernetes way

Service
A

Service
B

Replica 2

Pod

Pod
Replica 1

Access point
=

microservice
Code

Container

Container

High Complexity

Multiple points of failure

!!!

?

?

Challenges
● How are the requests routed between services?

● How do I detect failures and downtime?

● How to upgrade and test new versions of a service?

● Securing the communication

Service mesh to the rescue

What is a service mesh
● Infrastructure/framework that handles communication

between services

● Often implemented as network proxies deployed

alongside the microservices

Istio - Ιστίο

Open source service mesh

The dry facts
● Started in May 2017

● Means “sail” in Greek

● Developed in Go

Istio features
● Load balancing (HTTP, gRPC, TCP...)

● Traffic control (routing rules, retries, timeouts, fault

injection, mirroring)

● Secure service-to-service communication

● Access controls (authorization)

● Metrics and traces for traffic

Important Terminology
● Workload - anything owning/controlling pods (like a

Deployment) or the pods themselves

● Service - a microservice

● Application - label “app” on a pod/service

● Version - label “version” on a pod/service

Before Istio

POD A

Container

Routing code

Circuit breaker
code

Business logic
code

POD B

Container2

Routing code2

Circuit breaker
code2

Business logic
code2

Istio

POD A

Container

Routing code

Circuit breaker
code

Business logic
code

POD B

Container2

Routing code2

Circuit breaker
code2

Business logic
code2

Sidecar Proxy
● A proxy is deployed in a container next to each instance

of microservice (inside a pod)

● Container name: istio-proxy

● It is transparent to application code

● Envoy open source proxy is currently used

How is the sidecar injected?
● Manually

● Automatically injected to pod on creation
○ kubectl label namespace default istio-injection=enabled

○ Mutating Admission Webhook is used for sidecar injection

○ Actually… 2 containers are injected: istio-init and istio-proxy

Istio architecture

Sidecar Proxy in Istio and Kubernetes

POD

Container

Business logic
code

POD

Container

Business logic
code

Sidecar
container

Before Istio, no sidecar With sidecar

Routing code

Circuit breaker
code

With Istio - sidecar intercepts all traffic

Envoy
sidecar

container

POD A

Sidecar
container

Container

Business
logic code

HTTP,
TCP,
TLS...

HTTP,
TCP,
TLS...

Envoy
sidecar

container

POD C

Sidecar
container

Container

Business
logic code

Sidecar
container

Container

Business
logic code

Envoy
sidecar

container

POD B

Sidecar
container

Container

Business
logic code

Configuration is transparent to the services and not part of the code

Istio routing in Kubernetes

Service
A

Service
B

Pod
Replica 2

Pod

Pod
Replica 1

Container

Container

Sidecar
container Container

Sidecar
container

Sidecar
container

Communication is “Envoy to Envoy”
bypassing the Kubernetes Service

Different routing scenarios
● A/B testing

● Traffic shifting
○ Canary deployment (an example of traffic shifting)

● Mirroring traffic

Weighted Routing with Istio - A/B

Service
A

Service
B

Replica 2

Pod
Version 2

Pod

Pod
Version 1
Replica 1

50%
traffic

50%
traffic

Proportion of traffic routed to a version is
independent of number of instances of that version

Weighted Routing - Canary

Service
A

Service
B

Replica 2

Pod

Pod
Version 2

Pod
Version 1
Replica 1

90%
traffic

10%
traffic

Proportion of traffic routed to a version is
independent of number of instances of that version

Matching Routing with Istio

Service
A

Service
B

Pod
Version 1

Pod

Pod
Version 2

All
users

User
Alissa

Mirroring traffic

Service
A

Service
B

Pod
Version 1

Pod

Pod
Version 2

Copy of
traffic

Response
disregarded

Real
traffic

"Anything that
can go wrong
will go wrong"

(Murphy’s law)

Chaos engineering with Istio
● Inject delays

○ Simulate network latency
○ Simulate an overloaded service

● Define aborts (Inject Errors)
○ Simulate failure in a service (return a predefined HTTP Error)
○ A good alternative for a manual shutdown or “scale to zero”

Inject delay

Service
A

Service
B

Instance 2

Pod

Pod
Version 2

Pod
Version 1
Instance 1

Add 7 seconds
delay to

response

Inject Error

Service
A

Service
B

Instance 2

Pod

Pod
Version 2

Pod
Version 1
Instance 1

Return Error
500 for user
Alissa

Work as
usual for all
the users

Circuit breaker
● Set a connection pool to limit connections and requests
● Example: “Set a connection pool of 100 connections with no more than 10

req/connection to service A”

Outlier detection
● Classify instances as healthy/unhealthy

● Eject unhealthy instances for a defined timeframe which

can be increased over time
● Example: “Scan all pods every 5 mins, any instance that fails 7

consecutive times with 5XX error code will be ejected for 15 minutes.”

Authorization and Authentication
● Authentication

○ End user authentication (JSON Web Token (JWT))
○ Service to service authentication (mutual TLS)

■ Permissive mode is possible for flexible migration
● Authorization

○ Can service <A> send <this request> to service ?
○ Roles are visible across namespaces
○ ServiceRole and ServiceRoleBinding

Security
● Defining a Gateway ingress/egress to enable traffic

in/out of mesh

● Citadel monitors service accounts creation and creates
a certificate for them

○ Certificates only in memory, sent to Envoy via SDS API

● mTLS can be defined on multiple levels
○ Client and server exchange certificates, 2 way

○ All mesh, specific service, etc.

Configuration objects
• VirtualService != Kubernetes service

• Rules for how requests to a service are routed within service mesh

• Routing logic, load weighting, chaos injection

• DestinationRule
• Configures policies to be applied to a request after VirtualService

routing has occurred

• Load balancer, circuit breaker

• MeshPolicy, Gateway, ServiceEntry and more...

https://istio.io/docs/reference/config/istio.networking.v1alpha3/
https://istio.io/docs/reference/config/istio.networking.v1alpha3/

Configuration Yaml example

All Istio objects are
CRD

(CustomResource
Definition)

New set of challenges
● How many versions exist for service A?

● Is there any traffic now?

● Is routing configured for service B?

● Is my configuration valid?

● Is security on?

● Is the app healthy?

Kiali - Κιάλι

Open source
Istio service mesh observability

Dry facts
● Started in January 2018

● Means “spyglass” or “monocular” in Greek

● Developed in Go and React

Kiali Features
● Visualize mesh connections and traffic
● Service and application health
● Configure routing via UI
● Validate Istio configurations
● View metrics, traces and logs
● Visualize security configuration

 A picture is worth a thousand yamls

Demos based on Bookinfo example

Let’s see Kiali in action
● Mesh visualization

● Fault Injection

● Configuration Validation

● Configure routing rules

● Tracing

● Traffic stats

Bookinfo example

Bookinfo on Kiali

Kiali Features

Overview page

Mesh Topology Graph

Hide and Seek

Details Page

Viewing Logs

Runtime metric dashboards

Weighted Routing

Configuration validations

Tracing (integration with Jaeger)

Visualizing security

Connect with the community
Kiali.io Istio.io

KialiProject IstioMesh

github.com/kiali github.com/istio

https://www.kiali.io/
https://istio.io/
https://github.com/kiali/kiali
https://github.com/istio/

Icon credits
● Twitter by Lubos Volkov, the Noun Project

● Light Bulb by artworkbean, the Noun Project

● Magnifying Glass by Musket from the Noun Project

● Questions by Rediffusion from the Noun Project

● Mug by Alex Getty from the Noun Project
● Diamond by MarkieAnn Packer from the Noun Project
● Box by Cornelius Danger from the Noun Project

https://thenounproject.com/term/light-bulb/125149/
https://thenounproject.com/search/?q=search&i=125677
https://thenounproject.com/term/question/29387/
https://thenounproject.com/term/mug/140889/
https://thenounproject.com/search/?q=ruby&i=48882
https://thenounproject.com/search/?q=package&i=26866

Thank you!

mikeyteva

Introduction to service mesh
with Istio and Kiali

Alissa Bonas

mikeyteva

