
Using an Open Source SDN Controller to Deploy
a Multi-Terabit/s Production Network

Brad Cowie
University of Waikato

Introduction to faucet
● Lightweight Open Source SDN controller
● OpenFlow v1.3
● Supports Layer 2 and Layer 3
● Policy driven approach to extensibility

Why use OpenFlow in 2019?
● OpenFlow is Software-defined Networking
● NETCONF/YANG/etc is software-deployed Networking
● Decent support by many hardware vendors

● Low system resource requirements
● Uses multi-table OpenFlow pipeline
● Multi-vendor without drivers
● Well tested, production quality
● Automated device qualification
● High Availability through idempotency
● Controller is not in the forwarding path

Why use faucet?

Faucet Gauge gauge.yaml

Prometheus

BGP

Instrumentation
Flow Rules &

Port Statistics

External
Router

External
System Grafana

Events

faucet.yaml

SDN Switch

Faucet configuration
● YAML configuration file
● Represents topology & features

of network
● Faucet is idempotent

○ Give 2 controllers same configuration
and they will configure the network
the same

vlans:
office:

 vid: 100
 description: "office network"
 faucet_vips: ['10.0.100.254/24']
dps:

sw1:
 dp_id: 0x1
 hardware: "Open vSwitch"
 interfaces:
 1:
 description: "host1"
 native_vlan: office
 2:
 description: "host2"
 native_vlan: office

SC18
● Annual SuperCompute Conference in the US
● 30th anniversary was November 2018 in Dallas, Texas
● “SCinet” network built each year to power conference

○ One of the world’s fastest temporary networks

● Faucet was deployed on SCinet for SC18

SCinet 2018
● 4.02 terabit/s connectivity
● $52 million in hardware
● 4.25 tons of equipment
● 225 volunteers

Photo credit: SC Conference Series

Let’s take a step back
● How did we get involved?
● Approached conference committee April 2018
● Proposed a mutually beneficial faucet deployment
● Our proposal was accepted and work begun...

Phase 1: Planning
● Months of video conferences from NZ to USA/Europe
● Faucet SCinet team distributed between

○ Hamilton, New Zealand
○ Wellington, New Zealand
○ Berkeley, California, USA
○ Champaign, Illinois, USA
○ Dallas, Texas, USA

Scope for faucet deployment
● Faucet will run in parallel with regular network
● Peer with regular SCinet core and advertise/receive routes
● Will provide percentage of booths on show floor Internet access
● Each booth has separate VLAN and subnet
● Booth can be connected at 1GbE, 10GbE or 100GbE
● Customer information comes from Django web app

Initial design
● Faucet needs physical presence in

○ Core layer (NOC)
○ Access layer (DNOC)

Phase 2: Source hardware
● Approach hardware vendors and ask nicely for hardware
● Thanks Allied-Telesis, Cisco and NoviFlow!

○ 2 devices each

● Coordinate shipping to test lab in Berkeley, California

Wait

noc-rtr-2

Cisco
NCS5500

noc-faucet

NoviFlow 32x100G Switch
with Barefoot Tofino ASIC

noc-rtr-1

Juniper
MX10008

faucet-controller

Control Plane Network

2x100G
LACP

10G
NFV

100G

dci

Cisco
C9500-32C

dci

Allied Telesis
x950-28XSQ

dci

Cisco
C9500-48Y4C

dci

Allied Telesis
SBx908Gen2

dci

NoviFlow
2122

Iterate on
network design

Port counts:
● 75x 100GbE
● 146x 10GbE
● 48x 1GbE

9.008 Terabit per second

noc-rtr-2

Cisco
NCS5500

noc-faucet

NoviFlow 32x100G Switch
with Barefoot Tofino ASIC

noc-rtr-1

Juniper
MX10008

faucet-controller

Control Plane Network

2x100G
LACP

10G
NFV

100G

dci

Cisco
C9500-32C

dci

Allied Telesis
x950-28XSQ

dci

Cisco
C9500-48Y4C

dci

Allied Telesis
SBx908Gen2

dci

NoviFlow
2122

Network
functions

Faucet will provide:
● VLANs
● IPv6

Router Advertisements
● Inter-VLAN Routing
● Network Security Policy

NFV Services:
● DHCP
● BGP

Brief introduction to P4

Control plane

Runtime API

Data plane
Tables

Memory

Control
signals

P4 program

P4 architecture
model

P4 compiler

Load API

Load
dataplane

runtime

P4
Runtime

Combining P4 and OpenFlow
1. Write OpenFlow as P4 application
2. Compile application with Barefoot’s P4 compiler to run on Tofino ASIC
3. Faucet uses OpenFlow as runtime API (instead of P4 Runtime) to push rules

to P4 ASIC

Feature written by NoviFlow and available in their NoviWare Network OS

Development
● Make sure required features work by adding integration tests
● Built a scale model back in New Zealand
● Started work on automation

Automation
● Define a set of tasks once, can then repeat tasks at no cost
● Applies perfectly for network service definitions
● Faucet SCinet deployment heavily used ansible

Automation

SCinet Customer DB

Source of truth for
network

Python

Use django models to
dump all customer
connections into
YAML

Ansible

Take YAML and use
jinja2 templates to
output configuration

Configuration

● Faucet
● DHCP
● BGP
● Linux Interfaces

180 lines of ansible

260 lines of jinja2 templates
290 lines of YAML 1200 lines of config

Available on GitHub
● Ansible code

○ https://github.com/wandsdn/sc18-ansible

● Generated faucet configuration
○ https://github.com/wandsdn/sc18-faucet-configs

Phase 3: Testing
● Use ansible to deploy configurations
● Throw a lot of traffic at it
● Network namespaces are great!

○ Can easily spin up thousands of network namespaces on a single machine
○ Use a network namespace to represent fake booth

● Write some bash scripts to manage
○ Test reachability (onall.sh pingall.sh)
○ Test throughput (randomiperf.sh)

Ship network off to conference venue

Phase 4: Staging
● SCinet equipment is staged away from show floor
● Network is turned on for the first time
● Interop testing and diagnosing problems

Faucet staging team photo after
network booted up without issue

Phase 5: Show Setup

Phase 5: Show Setup
● Customer database is finalised
● Trigger automation to deploy

configuration
● Work with booths as they are built

to ensure access works

DNOC

Faucet switch

Regular switch

Optical transport

NOC

Photo credit: SC Conference Series

● Borrow some linux boxes full of 100G interfaces to load test network

Load test

Phase 6: Show Time
● Look for issues

○ Watch tickets queue
○ Watch monitoring

● Fix issues
○ Deploy light meters
○ Swap optics
○ Rolling fibres

Phase 6: Cleanup
● 7 months of planning
● 3 weeks of testing
● 3 weeks setup
● 1 day of tear down

What did we learn?
● Automating the network services that 90% of customers use helped operators

have more time to spend working on the interesting 10% of customers
● Faucet allowed us to effectively ignore the underlying network equipment
● Proved 10,000 lines of python can easily handle many terabit/s

Photo credit: SC Conference Series

Questions?

Photo credit: SC Conference Series

https://faucet.nz

@faucetsdn

brad@waikato.ac.nz

@nzgizmoguy

