Evolving NVDIMM for Enterprise Grade

QI Fuli

Linux Development Division

Fujitsu Limited
Who am I

QI Fuli

- Software Engineer at Fujitsu Ltd
- PhD Student at University of Tokyo
- Working on Persistent Memory
- Email: qi.fuli@fujitsu.com
Introduction of NVDIMM

Monitor the SMART events from NVDIMM

Distinguish and replace faulty NVDIMM

Future work & Summary
Introduction of NVDIMM
NVDIMM Overview

- **Non-Volatile Dual In-line Memory Module**
 - a type of random-access memory
 - NVDIMM retains its data even if electrical power is removed

- **Use case**
 - In-Memory Database, etc.
Interleave set

Two or more NVDIMMs create an N-Way interleave set to provide stripes read/write operations for increased throughput.

Namespace

Defines a contiguously-addressed range of Non-Volatile Memory.

Region

A group of one or more NVDIMMs, or an interleaved set, that can be divided up into one or more Namespaces.

Concepts [1]

- **Type**
 - Determines the way in which the persistent memory associated with a Namespace or Region can be accessed
 - **PMEM**: Direct access to the media via load/store operations. (DAX supported)
 - **BLK**: Direct access to the media via Apertures. (DAX is not supported)

- **Mode**
 - Determines which NVDIMM software feature are enabled for a given Namespace.
 - Namespace Modes include fsdax, devdax, sector, and raw.

Namespace Modes

- **fsdax**
 - filesystem provide direct access to Persistent Memory to applications

- **devdax**
 - creates a character device instead of a block device
 - intended for applications that mmap() the entire capacity

- **sector**
 - to help software that doesn't understand that sectors might end up with a mix of old and new data if power loss occurs while writes were underway

- **raw**
 - a memory disk that does not support DAX
Configuration options

- Persistent Memory Pool(s)
- DAX Filesystem
- /dev/pmem0
- Namespace 0.0
- Region 0

NVDIMM 0 NVDIMM 1
Interleaved DIMMs

User Space (Applications)

Kernel Driver

Hardware

Non-Interleaved DIMMs

NVDIMM 0 NVDIMM 1

Persistent Memory Pool(s)
DAX Filesystem
/dev/pmem0
Namespace 1.0
Region 1

Persistent Memory Pool(s)
DAX Filesystem
/dev/pmem0
Namespace 2.0
Region 2
Non-Volatile Device Control (NDCTL)

- A utility for managing the Linux LIBNVDIMM Kernel subsystem
- Working with various NVDIMMs from different vendors
- Operations supported by ndctl
 - Provisioning capacity
 - Enumerating Devices
 - Enabling and Disabling NVDIMMs, Regions, and Namespaces
 - Managing NVDIMM Labels
Monitor the SMART events from NVDIMM
Why NVDIMM must be monitored?

- NVDIMM has a life span
 - Blocks of NVDIMM will be broken due to endurance problem
 - NVDIMM consumes spare block to rescue broken block
 - When spare decreases to 0, it can not rescue broken block
 - NVDIMM has no feature such as mirroring to save its data

- Backup and replacement is needed before no spares

- Users should know the best time to backup and replace
Why NVDIMM must be monitored?

- NVDIMM has a life span
- Blocks of NVDIMM will be broken due to endurance problem
- NVDIMM modules consume spare block
- When spare decreases to 0, it cannot rescue broken block
- NVDIMM has no feature such as mirroring to save its data
- Backup and replacement is needed before no spares
- Users should know the best time to backup and replace

Status of NVDIMM needs to be monitored and be notified before NVDIMM becomes faulty
We created a daemon to monitor NVDIMM

- monitor health status
- notify critical status

NVDIMMM will be broken !!!
Spare block ratio is low !!!

https://pmem.io/ndctl/ndctl-monitor.html
Features of ndctl monitor (1/3)

Monitoring

<table>
<thead>
<tr>
<th>SMART event</th>
<th>trigger</th>
<th>effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>spares-remaining</td>
<td>spare block value goes below the spare threshold limit</td>
<td>NVDIMM becomes broken; data will be lost; etc.</td>
</tr>
<tr>
<td>health-status</td>
<td>normal health status of NVDIMM changes</td>
<td></td>
</tr>
<tr>
<td>unclean-shutdown</td>
<td>last shutdown to be recorded at the next boot</td>
<td>saving data target fail on NVDIMM; etc.</td>
</tr>
<tr>
<td>media-temperature</td>
<td>temperature value of NVDIMM goes above threshold limit</td>
<td>server is getting too hot; may need remediation; a specific fan fails; etc.</td>
</tr>
<tr>
<td>controller-temperature</td>
<td>controller temperature value goes above threshold limit</td>
<td></td>
</tr>
</tbody>
</table>
Features of ndctl monitor (2/3)

Actions after monitoring

- Log the output notification
 - Log destination
 - syslog
 - arbitrary file (set in the configuration file or set by command option)
- Output format
 - JSON (can be analyzed by other log collectors, such as fluentd)

Kick other application (to be implemented)

- When the monitor detects a SMART health event, the application will move the data in real time.
Features of ndctl monitor (3/3)

Filtering

- objects to monitor can be filtered
 - all NVDIMMs are monitored by default
 - objects can be filtered by namespace, region, bus, and dimm
 - backup the data of applications which are running on a certain namespace
 ⇒ filter by namespace
 - allowing to monitor for any media error on the bus
 ⇒ filter by bus
- SMART health events to monitor can be filtered
ACPI supports for NVDIMM

- NVDIMM has SMART Health Info like SSD/HDD
 - SMART Health Info can be retrieved via a DSM
 - SMART Health Info includes spare block value and spare threshold limit

- ACPI 6.1 adds “NFIT Health Event Notification”
 - A notification will be sent when the spare block value goes below the spare threshold limit
 - A poll(2) event will be triggered when the notification is received

- Triggers a poll(2) event on /nmemX/nfit/flags

NVDIMM (Hardware) —> NFIT Health Event Notification —> Triggers a poll(2) event on /nmemX/nfit/flags

17
Architecture of ndctl monitor

ndctl monitor

- monitor poll(2) event(s) on /nmemX/nfit/flags
- retrieve NVDIMM SMART status
- filter object(s) to monitor

Kernel (OS)

- triggers a poll(2) event on /nmemX/nfit/flags

standard output, syslog, /var/log/ndctl/monitor.log etc.
Sample of output notification

"timestamp": "1537323709.432459532",
"pid": 28189,
"event": { "dimm-spares-remaining": true },
"dimm": {
"dev": "nmem1", "health": {
"health_state": "non-critical",
"temperature_celsius": 23,
"controller_temperature_celsius": 25,
"spares_percentage": 4,
...\n"spares_threshold": 5,
"shutdown_state": "clean"
}
}
How to start ndctl monitor

- Linux distribution support systemd

  ```
  # systemctl start ndctl-monitor.service
  ```

- Linux distribution does not support systemd

  ```
  # ndctl monitor --daemon
  ```

- Users could run monitor as a one shot command

  ```
  # ndctl monitor
  ```
Distinguish and replace faulty NVDIMM(s)
Replacing faulty NVDIMM is complex

- Replacing NVDIMM is more difficult than SSD/HDD
 - Hardware does NOT support hot-replace for NVDIMM *
 - No hardware mirroring for NVDIMM
 - Software RAID does NOT work with Filesystem DAX or Device DAX
 - The specification of NVDIMM (region and namespace) causes additional complexity

* by then, distinguish feature was under developing
Replacing faulty NVDIMM is complex

If a block on Region 0 is faulty, and users need to replace the faulty NVDIMM, what information is necessary?
To replace the faulty NVDIMM, at least the following information is necessary.

1. A way to distinguish faulty NVDIMM
2. The relationship between physical location of NVDIMM and Device name of namespace(/dev/pmemX)
3. Other namespaces on the same NVDIMM for backup before the replacement
What Fujitsu has developed

Two features of ndctl to show the important information for replacing the broken NVDIMM

1. Show the detail of NVDIMM including broken block info in the region
2. Show the id of NVDIMM to find physical location

Fortunately, current ndctl can list all namespaces on a NVDIMM
To show faulty NVDIMM

- Ndctl did not display faulty NVDIMM information
 - It only listed bad block number in the region
 - When the region is interleaved, kernel/driver cannot distinguish NVDIMM.
 - “Translate SPA” is defined in _DSM of “NVDIMM root Device” at ACPI 6.2
 Firmware translates System Physical Address to “NFIT DIMM handle” and Physical address in the DIMM

- the translation in ndctl utility

<table>
<thead>
<tr>
<th>block number of region</th>
<th>Its System Physical address</th>
<th>ndctl</th>
<th>Get NFIT DIMM handle</th>
<th>NVDIMM device name (nmemX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>call _DSM translate SPA</td>
<td>firmware</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
To display bad block information

ndctl list -DRHMu

```
"regions":{
  "dev":"region0",
  "mappings":[
    { "dimm":"nmem1"},
    { "dimm":"nmem0"},
  ],
  "badblock_count":1,
  "badblocks":[
    { "offset":65536,
      "length":1,
      "dimms": [ "nmem0" ]
  ]
}
```

command to show region info with dimm, health, and bad block info

region 0 is interleaved by nmem1 and nmem0

displays which NVDIMM has bad block in this region
To show NVDIMM device location

- The physical location of a device can be confirmed with “dmidecode”
 - In addition, each device has SMBIOS handle, and shown in the command
- SMBIOS handle is “NVDIMM Region mapping structure” table in NFIT
- If ndctl utility can show it, the location can be found with the handle
- We made a patch that let ndctl show it as phys_id
Example of SMBIOS Handle of ndctl

```sh
# ndctl list -Du
```

```json
{
  "dev":"nmem1",
  "id":"XXXX-XX-XXXX-XXXXXXX",
  "handle":"0x120",
  "phys_id":"0x1c"
},
{
  "dev":"nmem0",
  "id":"XXXX-XX-XXXX-XXXXXXX",
  "handle":"0x20",
  "phys_id":"0x10",
  "flag_failed_flush":true,
  "flag_smart_event":true
}
```

display DIMM information with human readable format

The nmem0 includes broken block in previous result

phys_id is SMBIOS handle of these DIMM

0x10 is faulty NVDIMM’s handle
To show the location of NVDIMM

dmidecode

Handle 0x0010, DMI type 17, 40 bytes
Memory Device
 Array Handle: 0x0004
 :
 :
 Locator: DIMM-Location-example-Slot-A
 :
 Type Detail: Non-Volatile Registered (Buffered)

SMBIOS handle of NVDIMM
Locator: shows the place of NVDIMM
To find all namespaces on NVDIMM

```bash
# ndctl list -N -d nmem0
[
{ "dev":"namespace0.2",
  "mode":"sector",
  "size":67042312192,
  ...
},
{ "dev":"namespace0.0",
  "mode":"sector",
  "size":67042312192,
  ...
}
]
```

command to find all namespaces on the nmem0
Future work & Summary
Removing the “Experimental” of FS-DAX

- In the upstream, Filesystem DAX is still marked as experimental.
- Removing the experimental in the upstream was discussed during LSF/MM summit 2019
 - The end of the DAX experiment [1]
 - DAX semantics [2]

Fujitsu would like to remove the “experimental” of FS-DAX on XFS

[1] https://lwn.net/Articles/787233
[2] https://lwn.net/Articles/787973
Introduction of NVDIMM

Monitor SMART events from NVDIMMs
- Monitoring SMART status of NVDIMM is important
- Ndctl monitor daemon

Distinguish and replace faulty NVDIMM
- Replacement of NVDIMM is complex
- Adding some information in ndctl list for replacing NVDIMM