ACRN

Consolidate Real-Time and HMI with ACRN Hypervisor

Jason Chen/Fengwei Yin/Jack Ren, Intel ACRN Team

Table of Contents

PART 1: What is ACRN	р	age 3
PART 2: Industrial Use Case	p	age 6
PART 3: Architecture	р	age 7
PART 4: Roadmap	р	age 14
PART 5: Call for Participation	p	age 15

What is ACRN[™]

- The Big Little Hypervisor for IOT

A flexible, open-source, lightweight hypervisor for IOT workload consolidation

A Linux Foundation Project Launched in March 2018

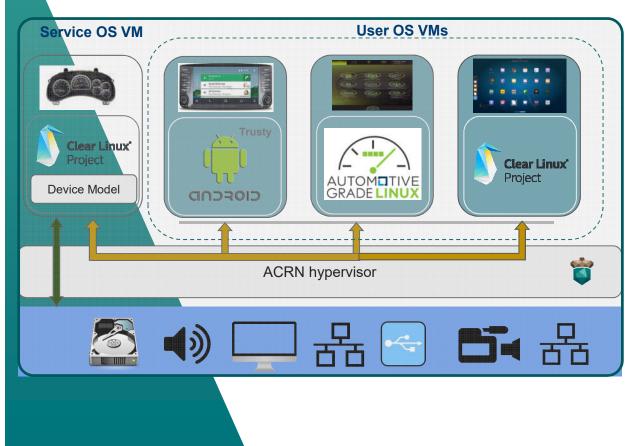
https://projectacrn.org

Value Proposition

Small Footprint

- Optimized for IOT class solutions
- Significantly smaller footprint than datacenter targeted hypervisors

Heterogeneous Workloads Consolidation

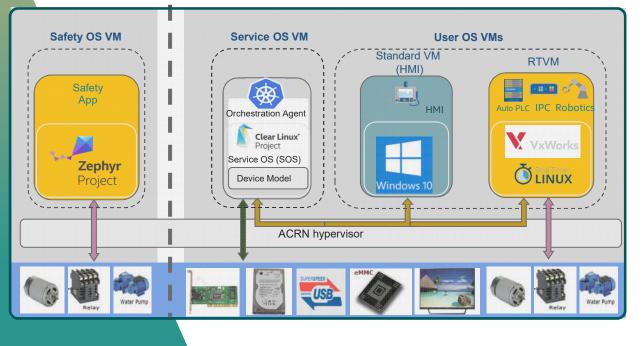

- Real time & Non-Real time
- Functionally Safe & non-safe

Open-source with Flexible Licensing

- BSD license enables proprietary Guest OS
- True Open source with a vibrant Community

ACRN 1.0

Ready for Production


Released in May 2019

Key Features

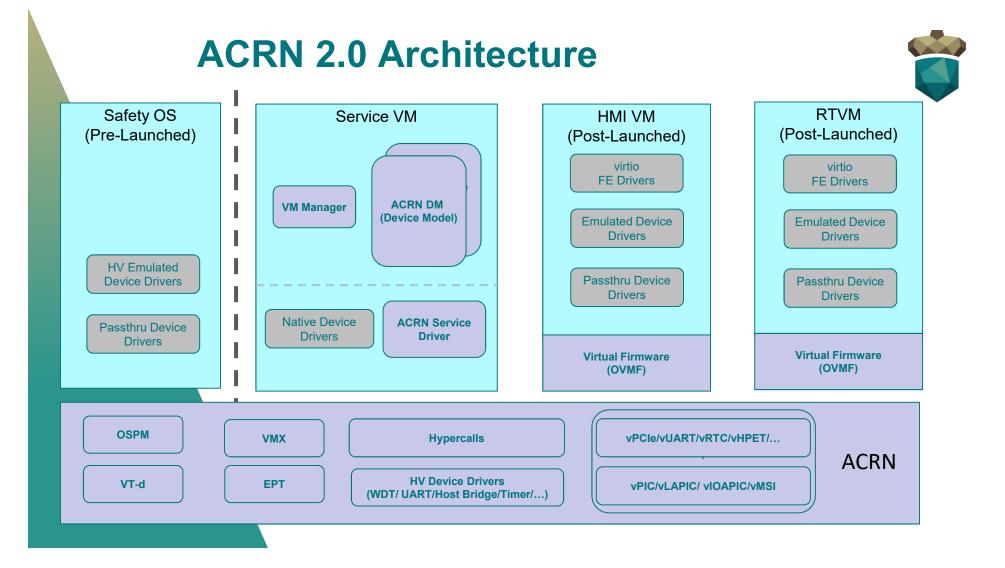
- Safety and Security Isolation (Cluster + IVI)
- Extensive Sharing Capabilities
- Graphics, media, USB, audio, camera etc.
- Advanced DMA/graphics buffer sharing
- Multiple OS Support
- Clear Linux, Yocto, Ubuntu
- Android, AGL, AliOS
- MISRA-C Compliance

Industrial: Safety + RT + HMI

Key Challenges:

- Mixed Criticality:
- Real-Time vs non Real-Time
- Safety vs non-Safety
- Isolation vs Sharing

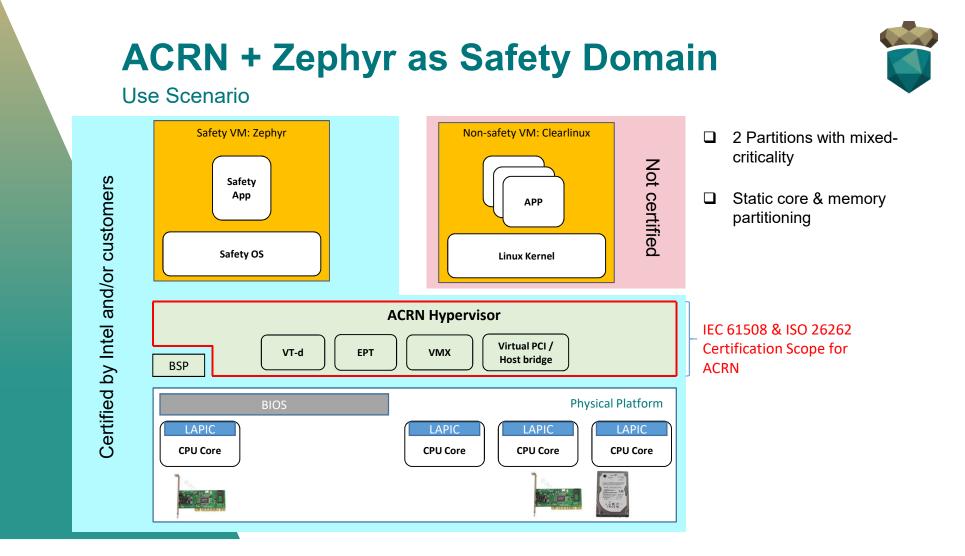
Real-Time (Hard / Soft)

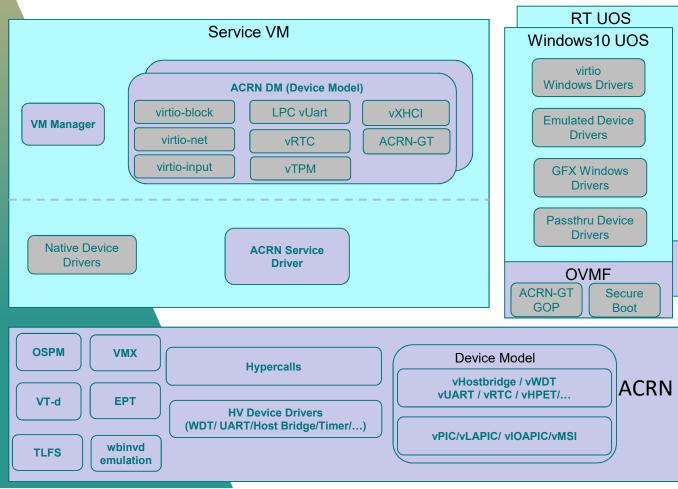

- GBE packet IO control loop < 12us
- MSI interrupt latency < 4us
- Cyclictest jitter < 10us

🗆 HMI

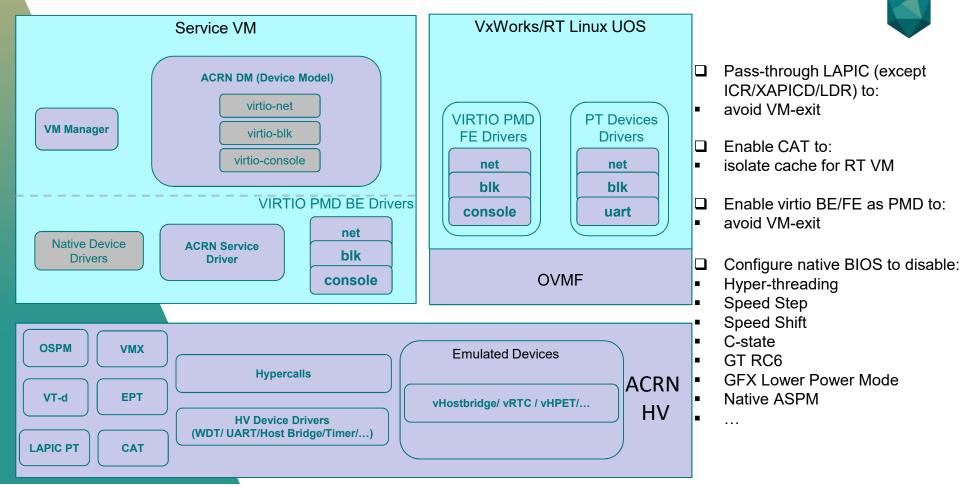
Window10

□ Functional Safety


- IEC 61508-3 (Industrial)
- ISO 26262 (Automotive)


Industrial Usage: Device Mapping Table

Devices	Soft RTVM (RT Linux)	Hard RTVM (VxWorks)	HMI (Windows/Linux)
RTC	Virtual	Virtual	Virtual
PCI	Virtual	Virtual	Virtual
UART	Passthru	Passthru	Virtual/Passthru
GBE Network	Virtual (PMD) /Passthru	Virtual (PMD) /Passthru	Virtual
TSN (i210)	Passthru	Passthru	N/A
Storage	Virtual (PMD) /Passthru	Virtual(PMD) /Passthru	Virtual
FPGA	Passthru	Passthru	N/A
GPU	N/A	N/A	Mediated Passthru
Audio	N/A	N/A	Passthru
USB	N/A	N/A	Virtual
Watchdog Timer (WDT)	Virtual	Passthru / Virtual	Virtual



Windows as HMI domain

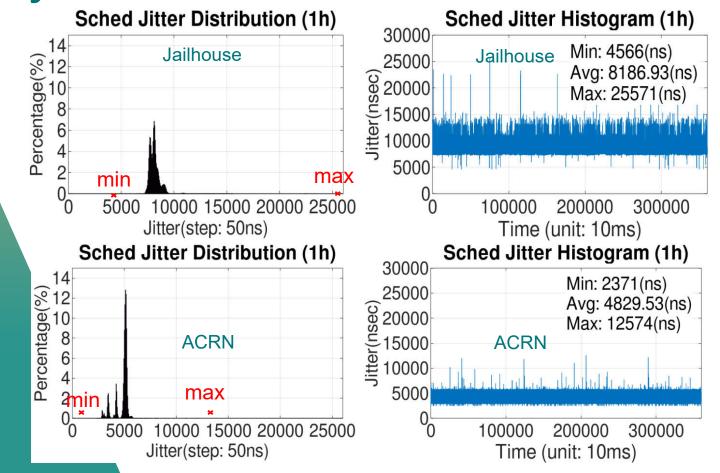
- ACRN-GT GOP is added into OVMF to support windows early display and windows installation display.
- Support OVMF secure boot with vTPM for Windows secure boot chain.
- Support the Microsoft defined TLFS(Hyper-V Hypervisor Top-Level Functional Specification) minimum requirements and optional performance optimization requirements.
- Utilize Microsoft DISM tool to pre-install virtio-win drivers and gfx driver to the Windows install .iso file.
- Use GT-CLOS to prevent Windows from Cache interference

VxWorks/RT Linux as Control domain

Configuration for Real Time Latency Evaluation

Configuration:

- HW: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 8G Memory, 1M L2 cache, 8M L3 cache
- Benchmark: cyclictest (measure the scheduler jitter), running in Real-Time VM


ACRN:

- Service OS VM: Linux kernel v4.14.68-rt42
- Real-Time VM: Preempt-RT Linux: 4.14.68-rt42, with 2GB memory

Jailhouse:

- Root cell: Linux kernel v4.14.68-rt42
- Non-root cell: Preempt-RT Linux: Linux:4.14.71-rt44+, with 2GB memory

cyclictest: ACRN vs Jailhouse

Data reused from paper: <<ACRN: A Big Little Hypervisor for IOT Development>>, VEE'2019

ACRN Open Source Roadmap in 2019

Area	V1.0@Q1'19	Q2'19	Q3'19	Q4'19 2020
нw	 APL NUC (UEFI) KBL NUC (UEFI) APL UP2 (SBL) 	 APL NUC (UEFI) KBL NUC (UEFI) APL UP2 (SBL) 	 APL NUC (UEFI) KBL NUC (UEFI) APL UP2 (SBL) Denverton SoC 	APL NUC (UEFI) KBL NUC (UEFI) APL UP2 (SBL) Denverton SoC
Hypervisor	 Power Management (S3/S5) ACRN partition mode Local APIC passthrough Real-Time VM support 	 VxWorks as Guest Zephyr as Guest ACRN Real-Time baseline ACRN Hybrid mode OVMF for Clear Linux Guest support IOMMU interrupt remapping VM Configuration Unify 	 Real-Time for Preempt-RT Linux Real-Time for Pseudo Locking Real-Time profiling tool Real-Time Performance optimization Kata Container support OVMF GOP driver for GVT-g Device Posted Interrupt(PI) Multiple IOAPIC support 	Windows as guest VxWorks as guest Zephyr as Safety OS CPU sharing Docker support based on Kata Containers
I/O virtualization	 GPIO virtualization QoS – Support RunC TPM2.0 Sharing (Security) 	 SR-IOV for share mode HPET Virtualization Open vSwitch I2C virtualization 	USB hub virtualization	Kubernetes support based on Kata Containers GVT-g Gen11 support GVT-g for Windows as Guest

Call to Action

Join us!

If you support the ACRN project and feel that this is the right thing for the embedded ecosystem, join us in moving this project forward together as a community member. We need code contributors, users, and project direction influencers!

https://projectacrn.org

Contribute code!

Make a difference to the project by committing code, help us become a better project.

Project code merged in the past 6 months allows you to become a voting member of the Technical Steering Committee.

All Contributions Matter

In open source projects a contribution can be anything which helps the project to accomplish its mission. Examples of Contributions beyond just code include:

Financial Assistance, Requirements Gathering, Documentation, Testing, Bug Reporting