ACRN

Consolidate Real-Time and HMI with ACRN Hypervisor

Jason Chen/Fengwei Yin/Jack Ren, Intel ACRN Team
Table of Contents

PART 1: What is ACRN .. page 3
PART 2: Industrial Use Case ... page 6
PART 3: Architecture ... page 7
PART 4: Roadmap ... page 14
PART 5: Call for Participation ... page 15
What is ACRN™
- The Big Little Hypervisor for IOT

A flexible, open-source, lightweight hypervisor for IOT workload consolidation

A Linux Foundation Project Launched in March 2018

https://projectacrn.org
Value Proposition

Small Footprint
- Optimized for IOT class solutions
- Significantly smaller footprint than datacenter targeted hypervisors

Heterogeneous Workloads Consolidation
- Real time & Non-Real time
- Functionally Safe & non-safe

Open-source with Flexible Licensing
- BSD license enables proprietary Guest OS
- True Open source with a vibrant Community
ACRN 1.0

Ready for Production
- Released in May 2019

Key Features
- Safety and Security Isolation (Cluster + IVI)
- Extensive Sharing Capabilities
- Graphics, media, USB, audio, camera etc.
- Advanced DMA/graphics buffer sharing
- Multiple OS Support
- Clear Linux, Yocto, Ubuntu
- Android, AGL, AliOS
- MISRA-C Compliance
Key Challenges:

- **Mixed Criticality:**
 - Real-Time vs non Real-Time
 - Safety vs non-Safety
 - Isolation vs Sharing

- **Real-Time (Hard / Soft)**
 - GBE packet IO control loop < 12us
 - MSI interrupt latency < 4us
 - Cyclic test jitter < 10us

- **HMI**
 - Windows 10

- **Functional Safety**
 - IEC 61508-3 (Industrial)
 - ISO 26262 (Automotive)
ACRN 2.0 Architecture

Safety OS (Pre-Launched)
- HV Emulated Device Drivers
- Passthru Device Drivers

Service VM
- VM Manager
- ACRN DM (Device Model)
- Native Device Drivers
- ACRN Service Driver

HMI VM (Post-Launched)
- Emulated Device Drivers
- Passthru Device Drivers
- Virtual Firmware (OVMF)

RTVM (Post-Launched)
- Virtio FE Drivers
- Emulated Device Drivers
- Passthru Device Drivers
- Virtual Firmware (OVMF)

ACRN
- OSPM
- VT-d
- EPT
- Hypercalls
- HV Device Drivers (WDT/ UART/Host Bridge/Timer/…)
- vPCI/vUART/vRTC/vHPET/…
- vPIC/vLAPIC/ vIOAPIC/vMSI
Industrial Usage: Device Mapping Table

<table>
<thead>
<tr>
<th>Devices</th>
<th>Soft RTVM (RT Linux)</th>
<th>Hard RTVM (VxWorks)</th>
<th>HMI (Windows/Linux)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTC</td>
<td>Virtual</td>
<td>Virtual</td>
<td>Virtual</td>
</tr>
<tr>
<td>PCI</td>
<td>Virtual</td>
<td>Virtual</td>
<td>Virtual</td>
</tr>
<tr>
<td>UART</td>
<td>Passthru</td>
<td>Passthru</td>
<td>Virtual/Passthru</td>
</tr>
<tr>
<td>GBE Network</td>
<td>Virtual (PMD) / Passthru</td>
<td>Virtual (PMD) / Passthru</td>
<td>Virtual</td>
</tr>
<tr>
<td>TSN (i210)</td>
<td>Passthru</td>
<td>Passthru</td>
<td>N/A</td>
</tr>
<tr>
<td>Storage</td>
<td>Virtual (PMD) / Passthru</td>
<td>Virtual (PMD) / Passthru</td>
<td>Virtual</td>
</tr>
<tr>
<td>FPGA</td>
<td>Passthru</td>
<td>Passthru</td>
<td>N/A</td>
</tr>
<tr>
<td>GPU</td>
<td>N/A</td>
<td>N/A</td>
<td>Mediated Passthru</td>
</tr>
<tr>
<td>Audio</td>
<td>N/A</td>
<td>N/A</td>
<td>Passthru</td>
</tr>
<tr>
<td>USB</td>
<td>N/A</td>
<td>N/A</td>
<td>Virtual</td>
</tr>
<tr>
<td>Watchdog Timer (WDT)</td>
<td>Virtual</td>
<td>Passthru / Virtual</td>
<td>Virtual</td>
</tr>
</tbody>
</table>
ACRN + Zephyr as Safety Domain

Use Scenario

- Safety VM: Zephyr
 - Safety App
 - Safety OS

- Non-safety VM: Clearlinux
 - APP
 - Linux Kernel

Certified by Intel and/or customers

- 2 Partitions with mixed-criticality
- Static core & memory partitioning

ACRN Hypervisor

- VT-d
- EPT
- VMX
- Virtual PCI / Host bridge

Physical Platform

- BIOS
- LAPIC: CPU Core

IEC 61508 & ISO 26262 Certification Scope for ACRN
ACRN-GT GOP is added into OVMF to support Windows early display and Windows installation display.

- Support OVMF secure boot with vTPM for Windows secure boot chain.

- Support the Microsoft defined TLFS(Hyper-V Hypervisor Top-Level Functional Specification) minimum requirements and optional performance optimization requirements.

- Utilize Microsoft DISM tool to pre-install virtio-win drivers and gfx driver to the Windows install .iso file.

- Use GT-CLOS to prevent Windows from Cache interference.
Pass-through LAPIC (except ICR/XAPICD/LDR) to:
- avoid VM-exit

Enable CAT to:
- isolate cache for RT VM

Enable virtio BE/FE as PMD to:
- avoid VM-exit

Configure native BIOS to disable:
- Hyper-threading
- Speed Step
- Speed Shift
- C-state
- GT RC6
- GFX Lower Power Mode
- Native ASPM
- …
Configuration for Real Time Latency Evaluation

Configuration:
- HW: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 8G Memory, 1M L2 cache, 8M L3 cache
- Benchmark: cyclictest (measure the scheduler jitter), running in Real-Time VM

ACRN:
- Service OS VM: Linux kernel v4.14.68-rt42

Jailhouse:
- Root cell: Linux kernel v4.14.68-rt42
cyclic test: ACRN vs Jailhouse

Data reused from paper: "ACRN: A Big Little Hypervisor for IOT Development", VEE’2019
ACRN Open Source Roadmap in 2019

<table>
<thead>
<tr>
<th>Area</th>
<th>V1.0@Q1’19</th>
<th>Q2’19</th>
<th>Q3’19</th>
<th>Q4’19</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>• APL NUC (UEFI)</td>
</tr>
<tr>
<td></td>
<td>• KBL NUC (UEFI)</td>
</tr>
<tr>
<td></td>
<td>• APL UP2 (SBL)</td>
</tr>
<tr>
<td>Hypervisor</td>
<td>• Power Management (S3/S5)</td>
<td>• VxWorks as Guest</td>
<td>• Real-Time for Preempt-RT Linux</td>
<td>• Windows as guest</td>
<td>• Windows as guest</td>
</tr>
<tr>
<td></td>
<td>• ACRN partition mode</td>
<td>• Zephyr as Guest</td>
<td>• Real-Time for Pseudo Locking</td>
<td>• VxWorks as guest</td>
<td>• VxWorks as guest</td>
</tr>
<tr>
<td></td>
<td>• Local APIC passthrough</td>
<td>• ACRN Real-Time baseline</td>
<td>• Real-Time profiling tool</td>
<td>• Zephyr as Safety OS</td>
<td>• Zephyr as Safety OS</td>
</tr>
<tr>
<td></td>
<td>• Real-Time VM support</td>
<td>• ACRN Hybrid mode</td>
<td>• Real-Time Performance optimization</td>
<td>• CPU sharing</td>
<td>• CPU sharing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OVMF for Clear Linux Guest support</td>
<td>• Kata Container support</td>
<td>• Docker support based on Kata Containers</td>
<td>• Docker support based on Kata Containers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IOMMU interrupt remapping</td>
<td>• OVMF GOP driver for GVT-g</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VM Configuration Unify</td>
<td>• Device Posted Interrupt(PI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Multiple IOAPIC support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O</td>
<td>• GPIO virtualization</td>
<td>• SR-IOV for share mode</td>
<td>• USB hub virtualization</td>
<td>• Kubernetes support based on Kata Containers</td>
<td></td>
</tr>
<tr>
<td>virtualization</td>
<td>• QoS – Support RunC</td>
<td>• HPET Virtualization</td>
<td></td>
<td>• GVT-g Gen11 support</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• TPM2.0 Sharing (Security)</td>
<td>• Open vSwitch</td>
<td></td>
<td>• GVT-g for Windows as Guest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• I2C virtualization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Feature and dates for reference only and subject to change without notices
Call to Action

Join us!
If you support the ACRN project and feel that this is the right thing for the embedded ecosystem, join us in moving this project forward together as a community member. We need code contributors, users, and project direction influencers!

Contribute code!
Make a difference to the project by committing code, help us become a better project. Project code merged in the past 6 months allows you to become a voting member of the Technical Steering Committee.

All Contributions Matter
In open source projects a contribution can be anything which helps the project to accomplish its mission. Examples of Contributions beyond just code include:
Financial Assistance, Requirements Gathering, Documentation, Testing, Bug Reporting

https://projectacrn.org