

About us

Garrett Jones
Staff Software Engineer

Google Seattle

Tomohiro Suzuki
Software Engineer
Google New York

Agenda

● Intro to diamond dependency conflicts

● Google's Java Library Best Practices

● Linkage Checker

● Q&A

Story

● Google monorepo vs OSS independent libraries

● Megathread prompted by user complaints

● No consensus

● Proposals, summits, proposals, hackathons

● Wrote best practices, created tools

Diamond Dependency Conflicts

Diamond dependency conflicts: A visual representation

D:1

B:1

A:1 Linear dependency graph: everything is happy

A:1 Library A, version 1

Legend

Diamond dependency conflicts: A visual representation

D:1

B:1

A:1

D:2

D introduces a new major version (D:2)

Diamond dependency conflicts: A visual representation

D:1

B:1

A:1

D:2

C:1

Another package, C, declares a dependency on D:2

Diamond dependency conflicts: A visual representation

D:1

B:1

A:1

D:2

C:1

A:2 A new version of A attempts to add C as a dependency.
Diamond dependency conflict! Only one of D:1 or D:2 can
be chosen.

Diamond dependency conflicts: A visual representation

D:1

B:1

A:1

D:2

C:1

A:2 When D:2 is selected, this breaks B

Diamond dependency conflicts: A visual representation

D:1

B:1

A:1

D:2

C:1

A:2 When D:1 is selected, this breaks C

Diamond dependency conflicts: A visual representation

D:1

B:1

A:1

D:2

B:2

C:1

A:2 The only solution: A has to force B to make a new version
that depends on D:2

Google's approach

1) Fix burning conflicts
2) Establish best practices for library developers*
3) Create tools*
4) Create BOMs (bill of materials) for library users

Java Library Best Practices
(for library developers)

Google's Java library best practices (JLBP)

● 18 best practices, published at
github.com/cloud-opensource-java/library-best-practices

● I will cover only 5 here

https://github.com/GoogleCloudPlatform/cloud-opensource-java/tree/master/library-best-practices

JLBP-1: Minimize dependencies
JLBP-2: Minimize API surface
JLBP-3: Use Semantic versioning
JLBP-4: Avoid dependencies on unstable libraries and features
JLBP-5: Avoid dependencies that overlap classes with other dependencies
JLBP-6: Rename artifacts and packages together
JLBP-7: Make breaking transitions easy
JLBP-8: Advance widely used functionality to a stable version
JLBP-9: Support the minimum Java version of your consumers
JLBP-10: Maintain API stability as long as needed for consumers
JLBP-11: Stay up to date with compatible dependencies
JLBP-12: Make level of support and API stability clear
JLBP-13: Quickly remove references to deprecated features in dependencies
JLBP-14: Do not use version ranges
JLBP-15: Produce a BOM for multi-module projects
JLBP-16: Ensure upper version alignment of dependencies for consumers
JLBP-17: Coordinate Rollout of Breaking Changes
JLBP-18: Only shade dependencies as a last resort

Problem 1: "Overlapping" classes

A

class
X

Problem 1: "Overlapping" classes

B

A

class
X

Problem 1: "Overlapping" classes

B

A

class
X

C

Problem 1: "Overlapping" classes

B

A

class
X

class
Y

C

Problem 1: "Overlapping" classes

B

A

class
X

class
Y

C
class

Z

Problem 1: "Overlapping" classes

B

class
O

A

class
X

class
Y

C

class
O

class
Z

Problem 1: "Overlapping" classes

B

class
O

A

class
X

Classes loaded:
● class X [from library A]
● class Y [from library B]
● class O [from library B]
● class Z [from library C]

class
Y

C

class
O

class
Z

Problem 1: "Overlapping" classes

B

class
O

A

class
X

Classes loaded:
● class X [from library A]
● class Y [from library B]
● class O [from library B]
● class Z [from library C]

Classes not loaded:
● class O [from library C]

class
Y

C

class
O

class
Z

Problem 1: "Overlapping" classes

B

class
O

A

class
X

Classes loaded:
● class X [from library A]
● class Y [from library B]
● class O [from library B]
● class Z [from library C]

Classes not loaded:
● class O [from library C]

What can break?
● calls from Z to O (for things not in the version of O

included in B)
class

Y

C

class
O

class
Z

What needs to be true?

Every fully-qualified class name must be present in only one library in the dependency
tree

JLBP-5: Avoid dependencies that overlap classes with
other dependencies

JLBP-6: Rename artifacts and packages together

Example violation of JLBP-5 & JLBP-6

javax.servlet:javax.servlet-api:3.1.0
& javax.servlet:servlet-api:2.5

both contain classes with the same names under javax.servlet.

JLBP-6 corollaries

● Don't combine artifacts together while keeping the same fully-qualified names
● Don't split artifacts apart while keeping the same fully-qualified names

Problem 2: Wide scale breakage from changes

guava

Problem 2: Wide scale breakage from changes

guava

F G

Problem 2: Wide scale breakage from changes

guava

F G

B C D E

Problem 2: Wide scale breakage from changes

guava

F G

B C D E

A

Problem 2: Wide scale breakage from changes

guava

F G

B C D E

A

Problem 2: Wide scale breakage from changes

guava

F G

B C D E

A

JLBP-8: Advance widely used functionality to a stable
version

(also follow JLBP-3: Use Semantic Versioning -
"stable version" = 1.0.0+)

Example violation of JLBP-8

com.google.auth:google-auth-library-java: still uses a 0.x version

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

3.0

A

X

B

72.0

Y Z

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

3.0

A

X

B

72.0

Y Z

4.0

A

X

B

73.0

Y Z

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

3.0

A

X

B

72.0

Y Z

4.0

A

X

B

73.0

Y Z

5.0

A

X

B

74.0

Z

Problem 3: finding compatible dependencies

A:1.0

A:2.0

A:3.0

A:4.0

A:5.0

B:70.0

B:71.0

B:72.0

B:73.0

B:74.0

For the latest A (5.0)
The latest A (5.0) can use the last 4 versions of B.

This is nice and flexible.

Problem 3: finding compatible dependencies

A:1.0

A:2.0

A:3.0

A:4.0

A:5.0

B:70.0

B:71.0

B:72.0

B:73.0

B:74.0

For the latest B (74.0)
The latest B (74.0) can only use the last version of A
(5.0).

This is somewhat restrictive!

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

3.0

A

X

B

72.0

Y Z

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

3.0

A

X

B

72.0

Y Z

4.0

A

X

B

73.0

Y Z

Problem 3: finding compatible dependencies
1.0

A

X

B

70.0

Y

2.0

A

X

B

71.0

Y Z

3.0

A

X

B

72.0

Y Z

4.0

A

X

B

73.0

Y Z

5.0

A

X

B

74.0

Z

Problem 3: finding compatible dependencies

A:1.0

A:2.0

A:3.0

A:4.0

A:5.0

B:70.0

B:71.0

B:72.0

B:73.0

B:74.0

For the latest A (5.0)
The latest A (5.0) can still use the last 4 versions of B.

No regression, things are going good.

Problem 3: finding compatible dependencies

A:1.0

A:2.0

A:3.0

A:4.0

A:5.0

B:70.0

B:71.0

B:72.0

B:73.0

B:74.0

For the latest B (74.0)
The latest B (74.0) can can used with the last 4
versions of A.

Great improvement! This is a lot more flexible.

JLBP-13: Quickly remove references to deprecated
features in dependencies

Example violation of JLBP-13

com.google.api:api-common-java: usage of deprecated methods in Guava
removed 1 year + 3 months after deprecation (1.7.0), instead of earlier (e.g. 1.2.0)

What about shading?

A

What about shading?

B
A

What about shading?

B
A

C
A

What about shading?

D

B
A

C
A

A

What about shading?

D

B
A

C
A

A

E

B
A

C
A

A

What about shading?

F

D

B
A

C
A

A

E

B
A

C
A

A

A
B
A

C
A

What about shading?

F

D

B
A

C
A

A

E

B
A

C
A

A

A
B
A

C
A

G

D

B
A

C
A

A

E

B
A

C
A

A

A
B
A

C
A

H

What about shading?

F

D

B
A

C
A

A

E

B
A

C
A

A

A
B
A

C
A

G

D

B
A

C
A

A

E

B
A

C
A

A

A
B
A

C
A

A
B
A

C
A

D

B
A

C
A

A

E

B
A

C
A

A

What about shading?

A

B

C

D

E

F

G

H

What about shading?

No shading: 8 units

With shading: 54 units (27 of which are copies of A)

54/8 = 6.75 x the size!

What about shading?

Other problems:

● Bad shading config can create overlapping classes or missing classes
● Shaded dependencies can't be overridden to roll out security fixes
● Shading doesn't work well with JNI or reflection

JLBP-18: Only shade dependencies as a last resort

This page is intentionally left blank

github.com/GoogleCloudPlatform/cloud-opensource-java

Consistency in OSS Libraries: Google’s Approach

Linkage Checker

Tomohiro Suzuki (suztomo@google.com)

https://github.com/GoogleCloudPlatform/cloud-opensource-java

Agenda: Linkage Checker

• Demo

• Implementation

• Case Study

Linkage Checker: Demo

Demo: Linkage Checker Maven Enforcer Rule

Problem: a simple project having dependency conflicts

Linkage Checker Enforcer Rule detects the conflict Project

google-api-client grpc-core

guava version: 26.0guava version: 20.0

https://github.com/GoogleCloudPlatform/cloud-opensource-java/tree/master/enforcer-rules

Demo: Linkage Checker Maven Enforcer Rule

A simple project with two dependencies

Demo: Linkage Checker Maven Enforcer Rule

No issue in compile

Demo: Linkage Checker Maven Enforcer Rule

Runtime Error!

Demo: Linkage Checker Maven Enforcer Rule

Q: Why java compiler does not detect the conflict?

A: the compiler only checks the references
 from the project

Project

google-api-client

grpc-core

guava version: 26.0guava version: 20.0

App.java

DnsNameResolver.class

Verify.class

Demo: Linkage Checker Maven Enforcer Rule

Add the enforcer rule

Demo: Linkage Checker Maven Enforcer Rule

$ mvn install

Demo: Google Libraries BOM Dashboard

Checks compatibility of artifacts in BOM (a set of libraries)

https://github.com/GoogleCloudPlatform/cloud-opensource-java#google-cloud-platform-java-dependency-dashboard

https://storage.googleapis.com/cloud-opensource-java-dashboard/com.google.cloud/libraries-bom/snapshot/index.html
https://storage.googleapis.com/cloud-opensource-java-dashboard/com.google.cloud/libraries-bom/snapshot/index.html
https://github.com/GoogleCloudPlatform/cloud-opensource-java#google-cloud-platform-java-dependency-dashboard

Linkage Checker: Implementation

Creates dependency tree of Maven artifacts

(Maven’s dependency mediation)

Project

Library A
version 1.0 Library B

Library C Library A
Version 2.0

Implementation Step 1: Dependency Tree

Library D

Implementation Step 2: JAR, Class files, and Constant Pool

Extracts references from constant pool

• JAR file
• Class File

• Constant Pool

(Example)
io.grpc.internal.DnsNameResolver constant pool:

 - class io.grpc.NameResolver
 ...
 - method: “com.google.base.Verify.verify(bool, String, Object)”

Implementation Step 3: Verification of Referents

Verifies the referents of the references

Does the referent (class B) exist?
Does the referent have the method with the expected signature?
Does the method accessible from class A?
etc...

Class A

Constant Pool:
 ...
 - ClassB.methodX(String, Object)

Class B

public methodX(String, Object)
private methodY(String)
(default) methodZ()

Case Study

Case 1: Missing Class

JLBP-18: Only shade dependencies as a last resort

mockito

bytebuddy

grpc-testing

asm-commons

ModuleHashesAttribute

https://github.com/GoogleCloudPlatform/cloud-opensource-java/blob/master/library-best-practices/JLBP-18.md

Case 2: Missing Method

Runtime Error from the demo
NoSuchMethodError Verify.verify(ZLjava/lang/String;Ljava/lang/Object;)V
 => void verify(boolean, String, Object)

Case 2: Missing Method Project

google-api-client

grpc-core

guava version: 26.0guava version: 20.0

DnsNameResolver.class

Verify.class
 public verify(boolean, String, Object...) Verify.class

 public verify(boolean, String, Object)

Java Language Specification Chapter 13: Binary Compatibility

https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html

Case 3: Missing Constructor

Case 3: Missing Constructor

spring-cloud-gcp-starter

spring-cloud-gcp-starter-trace:1.1.0.RC2 spring-cloud-gcp-starter-pubsub:1.1.0.RC2

...

Project

grpc-netty-shaded:1.16.1 grpc-core:1.17.0

...

class AbstractClientStream {
 AbstractClientStream(Headers, Option) {
 ...

class NettyClientStream extends AbstractClientStream {
 super(headers);
 ...

Conclusion

Diamond dependency issues:
 Dependency tree generated by different libraries may have conflicts.

• Java Library Best Practices

• Linkage Checker

https://github.com/GoogleCloudPlatform/cloud-opensource-java/

https://github.com/GoogleCloudPlatform/cloud-opensource-java/

Q&A

