

Step-by-Step Guide to Building a Truly Composable Infrastructure for 5G/Edge

Tejas Nevrekar, July 2019

Level Set: 5G Opportunities

Most Talked About 5G Services

Customers want customized, context-driven, secure, on-demand experiences.

Trajectory

The 5 Factors of 5G

Physical Legacy Matters

Transformation to Enable Opportunity

Service Innovation is changing in a 5G World

- Agile/DevOps will Create
 Services Faster
- Service Composition Needs will Increase in Variation
- Improve Service Delivery
 Times

Digital Transformation Requires Dynamism

- Intent-based
- No Silos
- Reduce Complexity

Optimization Needed to Improve Bottomline

- Efficiencies
- Commoditize Resources
- Scale in Heterogeneous
 Environments

What are we working towards? 5G and the Future

Vehicular Telematics

Internet of Things

Broadcast Services

Personalized &

On-Demand Services

Drones

Ingredients

- URLLC ultrareliable low 1 latency communication
- 2. EMBB – enhanced mobile broadband
- mMTC massive 3. machine-type communications

Enabling **Capabilities**

- 1 Network will have to be composable based on the intent
- Intent requires software 2. architecture which is cloud-enabled and microservices based

What will a Next Generation Network Look Like?

- Adaptable
- Mass Scale-Ready
- Open, vendor-agnostic

- Programmable
- Cloud-Ready
- ✓ Self-Organizing and Intent-Based
- ✓ RESTful interfaces & Data Models
- ✓ Agile Development-Enabled
- ✓ Standardized north & southbound interfaces

SDN-R

Network Slicing

Intent Driven Architecture

Current Infrastructure Operations

Static Investment

1 Decision Multiple Intended Uses **Dynamic Use Cases**

Cargo

Occupants \

Weather

Transit Time

Destination

© Lumina Networks, Inc. 2019. All rights reserved.

Future Infrastructure Operations

Flexible Investment

⁺₽⁻

Composition Based on Intent

Dynamic Use Cases

Cargo

Occupants

Weather

Transit Time

Destination

Custom Built for Custom Experiences

Microservices

A monolithic application puts all its functionality into a single process...

... and scales by replicating the monolith on multiple servers

each element of functionality into a

•	

... and scales by distributing these services across servers, replicating as needed.

- Componentization via Services
- Organized around Business Capabilities
- Products not Projects
- Smart endpoints and dumb pipes
- **Decentralized Governance**
- Decentralized Data Management
- Infrastructure Automation
- Design for failure
- **Evolutionary Design**

Composable components

Kubernetes Service Deployment - CRD

Kubernetes Service Deployment - CRD

Kubernetes and Network Service Mesh

Network Service Mesh CRD

Presented by:

© Lumina Networks, Inc. 2019. All rights reserved.

Network Service Mesh for ODL

- ODL participates in gRPC
- All ODL networks/devices/services can be defined as endpoints
- End-users can point from their containers to these services

Presented by:

© Lumina Networks, Inc. 2019. All rights reserved.

Kubernetes as Network Service Orchestrator

<u>Design</u>

Network Service Versioning/Upgrade/Rollback

• K8S Ecosystem Helm Charts/Manager

Deploy

Initial NF Configuration

Helm Charts for initial configuration

NF Config Store

 K8S Config Map/Secret in Central/Edge/Regional Cloud(s)

NF Placement

 K8S RM/QoS for performance-aware NF placement in K8S Central/Edge/Regional Cloud

Multi-Cloud Support

K8S Ecosystem KubeVirt etc. - VMs besides Containers

Operate

NF Monitoring

K8S Ecosystem Prometheus etc.

NF Auto Healing

K8S Replica Set

Incremental NF Configuration - Config Mgr./Dispatcher

 Track app config changes; dispatch changes using K8S API CRD; use app specific config operators to effect app config change

Predictability

Network Transformation Enables a New Tomorrow

Moving to intent-based automation provides a flexible foundation for 5G innovation creation

			Programmability	Orchestration	Feedback			
		Normalization	riogrammability					
	Virtualization							
CHANGE	Use API to separate functions from hardware	Service abstraction creates common interface powered by business intent	Open programmability of data plane enables real time control of decisions & easy service creation and deployment	Integration with end to end orchestration closes automation loop and creates resource efficiencies	Monitoring and Assurance	Predictive analytics enabled by machine learning for self-managed networks"	_	
	Operations & Culture							
BENEFITS	Flexibility and lower opex/capex	Freedom of choice – solution options	Faster fixes, better agility, greater speed	Reduces dependency in human, enables on-demand	High response, competitive agility	Fault and cost reduction	_	

LEAP Enables Next Generation Networks

Lumina Solutions / Functions

Partner / Customer Devices / Apps

New to 5G

- 1. Microservices Architecture
- Makes network applications aware and cloud-ready
- 3. Enable one-click service provisioning
- 4. Industry proven large scale production deployments
- 5. Wide array of standardized southbound & Northbound interfaces
- Pure Play Open Source-based with No Vendor Lock-in

Take Action

Service Providers

Vendors

Developers

- Implement agile software
 practices
 - Shorten the process between trial and production deployment
- Move to PoCs with open source software
 - Include brownfield components
- Reduce or eliminate slow legacy
 paperwork processes
 - e.g. RFIs, RFPs,...

- Embrace open source platforms
 - Work toward interoperability especially for existing widely-deployed equipment
- Increase contribution toward open source projects
 - Intellectual property, time, money, and people

- Simplify architectures
 - Make 5G and related technologies easier to deploy
- Increase focus on scale, stability, and interoperability testing
 - Automation and document key

Thank you.

Luminanetworks.com @luminanetworks

Tejas Nevrekar, Principal Engineer <u>tnevrekar@luminanetworks.com</u> @tejas.nevrekar