
Cloud Native Network
Tracing with Clovisor

Stephen Wong, FutureWei Technologies, Inc.

Project Clover

1.Aims to integrate cloud native computing related projects for NFV use cases
a.Integration point of cloud native projects is the application —- need to find a network function that is microservice-tized, k8s

friendly

2.Since its inception, Clover has focused on examining evaluating Istio for service mesh
orchestration for NFV control plane w.r.t. ease of operations and deployment

a.Traffic management and policy control
b.Visibility and Telemetry

Original Intent for OPNFV Clover Fraser

• Integrating cloud native computing projects in NFV use cases
• Originally wanted to utilize Clearwater and integrate it in Istio, failed:

1.Istio / Envoy drops connections due to them being headless services
2.Zero visibility into unsupported protocols

Clover Fraser Release (Apr’18)
CI/CD Pipeline

logging

tracing

monitoring

State sharing

Validation

Ingress

v2 v1

mirror

90%

10%

1. Built a simple HTTP based network function to demonstrate running containerized NF on Istio (0.6)
2. Essentially built a simplistic example A-B testing with Istio route-rules and tracing data
3. The acceptance criteria were based on correctness and performance, both of these could be obtained just via tracing data
4. Implementation of the sample HTTP NF gave a good view of “perfect” app —- that is, the spans were correlated by this app

preserving HTTP header

• Istio is great on many fronts — and for Clover, we
found its visibility and telemetry to be essential

• Application network tracing: Envoy’s network
traces reveal more on application behaviors: it is
transactional (request / response), reveals APIs
(HTTP or gRPC), and the duration calculates the
entire transaction

• Grouping spans into a single trace via request ID
and trace ID —- full path of traversal of micro
services on a particular request for the application

What were learned?
• Istio’s tracing data works best with

HTTP. For NFV use cases, support to
analyze / decode more network
protocols, even potentially proprietary
ones, will be critical

• Due to NFV common deployments,
more raw networking info including
more IP or TCP header fields

What more is needed?

Clovisor: Clover’s Network
Tracing Module

1.Cloud Native:
a)Cloud Provider Independent

• Bare-metal servers, GKE, EKS…etc

b)CNI Plugin Agnostic

• All CNI plugins should work unless such plugin does kernel bypass

c)CPU Architecture Independent

• Any architecture supported by Linux (x86, ARM…etc), code currently tested with
kernel versions 4.14 and 4.15

2.Design Principals:
a)Minimal Configurations

• Detect change in k8s cluster pod/service states

b)Minimal disruption to Packet Flow

• Utilizes eBPF to perform seamless integration, and will NOT modify traffic flow

c)Scale-out Architecture

• DaemonSet —- linearly scale on each node in cluster

3.In-depth Integration with Cloud Native Ecosystem
Projects:
a)Integrates with Kubernetes and OpenTracing -> Jaeger

b)Future: use fluentd to collect logs (packet dump), and

exposes metrics to Prometheus

visor

visor

visor

Clovisor Architecture

visor
client

visor
client

visor
client

k8s API /
Monitoring

Sends Traces

1.DaemonSet: runs an instance on every nodes
2.With k8s client, reads service port name to automatically detect

service port protocol
3.Detects pod creation, extracts all listening container ports, and injects

BPF program on ingress/egress of pod interface, which in without
configuration automatically trace all packets related to the container
ports (service port name to specify protocol)

4.New session detection and request / response duration done by
kernel, everything else is done on control plane (go server)

5.Traces sent via OpenTracing API to Jaeger

IOVisor / eBPF
1.eBPF:

a) Inject bytecodes to kernel trace points /
probes

• Event driven model

b)Networking: tc

• Utilizes Linux tc (traffic control) to inject bytecode

on ingress and egress direction of a network
interface

c)Verifier / JIT (just-in-time compiler)

• Verifier ensures bytecode does NOT crash kernel

2.IOVisor bcc:
a)Ease of eBPF Development

• Helper functions, kernel API wrappers…etc

b)Dynamic Validation and Compilation

• Userspace eBPF code written in ‘C’ is dynamically
verified (static analysis) and compiled

c)gobpf

• Golang interface for userspace code —- much

more performant than Python

golang

• Clovisor supports a protocol stack inspired model to allow user to implement their
own protocol analyzer plugin library

• Essentially user can extend Clovisor traces to also include her own proprietary
protocol, or adding more fields to the trace for existing supported protocols

• It also allows extending information on IP/TCP/UDP layers

Stackable Protocol Analyzer Plugin

http-<my protocol>-<another protocol-1>…

my-protocol another-protocol-1

1.Clovisor offers a second point of
tracing by tapping into node interfaces

2.Essentially Clovisor injects BPF
programs to track pod sessions that
are ingress or egress on the node
interfaces

3.On NFV use cases, node interfaces
are precious resources, the extra trace
info from these interfaces can be used
for rate limiting policies, providing
insight on microservice utilization of
bandwidth —- mapping all the way to
application

Node Interface Tracing

Socket Visibility

• Various kprobes allow BPF developers to tag
into different points of socket setup/teardown

• On various states of connections, on when
datagram is sent, or when packet is being
written / transferred

1.kprobe__tcp_v[4|6]_connect / kretprobe__tcp_v[4|6]_connect
2.kprobe__skb_copy_datagram_iter
3.kprobe__tcp_sendmsg / kretprobe__tcp_sendmsg

• This is useful essentially for encryption cases
1.Istio-auth as centralized authenticator, and Envoy to en/decrypt
2.kTLS

• Since data comes from different sources, Clovisor needs a higher level analytic engine to
correlate these trace datas into a single view

1.Correlate Clovisor network traces with Istio/Envoy traces on HTTP sessions via the request-id and trace-id fields in HTTP
header

2.For non-HTTP, Clovisor needs different types of correlation. Possible: extract application (event) logs from fluentd, and
run log analysis to correlate application events to (a) correlate Clovisor traces, and (b) correlates spans into a single trace

Correlation Engine

1.Clovisor is built to offer network tracing on cloud native application and can be
used to augment Istio/Envoy tracing

2.Clovisor allows user defined protocol analysis over different protocols on protocol
stack

3.Clovisor offers three points of visibility:
a.Pod ingress / egress
b.Node interfaces ingress / egress
c.Application socket

4.Clovisor has built-in correlation engine to correlate traces with other data sources

If Interested, please join us on clover-project@slack

Summary

Thank You!!!

