
Elena Zannoni – OSS Japan 2019 1

GNU Toolchain and CTF

Elena Zannoni
elena.zannoni@oracle.com

July 2019

Elena Zannoni – OSS Japan 2019 2

Background

● Debugging information:
– generated by the compiler to help debuggers and

other tools gather information about a program and
its behavior

– encodes types and structure of a program
(variables, functions, data structures, line numbers,
etc.)

– several debugging formats exist (stabs, DWARF,
coff...)

● DWARF is the most commonly used one

Elena Zannoni – OSS Japan 2019 3

A bit of DWARF
● Very complex
● Debug info stored in multiple .debug_<...> sections
● Dwarf uses DW_TAG_<name> for naming types
● Each type has multiple attributes (DW_AT_<name>) to describe it
● Backtrace / unwind information: in .debug_frame section (CFI)
● Each subroutine has a virtual unwind table

– describes at each code location (instruction) how to recover the values
of the registers and its frame address

● Tables are described indirectly by a set of operations /
instructions (stored in the debug info)

● Instructions: used to generate the table when needed, operate as
a stack machine.

● Size of .debug_* sections is quite large

Elena Zannoni – OSS Japan 2019 4

Motivation

● Perform debugging when debuginfo not available (stripped
executable and/or debug info not installed)

● Analyze stack traces in the absence of debug info
● Do so in a fast way, as opposed to off-line processing like

done for DWARF used with debuggers
● Do not expose unnecessary information via the debuginfo in

production binaries
● No ad-hoc solutions (hard to maintain)
● Must work also in the presence of always changing compiler

optimizations

Elena Zannoni – OSS Japan 2019 5

CTF
● CTF stands for “Compact C Type Format”
● Describes type information
● CTF originates from Solaris, but extended significantly for Linux
● More compact and easier to use/parse than DWARF
● Used by DTrace on Linux for the kernel since 2012 (dwarf2ctf tool,

libdtrace-ctf RPM)
– Libdtrace-ctf:

● https://github.com/oracle/libdtrace-ctf

– Dwarf2ctf script:
● https://github.com/oracle/dtrace-linux-kernel

● General framework, not DTrace specific
● Used also on FreeBSD, Solaris and MacOS

https://github.com/oracle/libdtrace-ctf
https://github.com/oracle/dtrace-linux-kernel

Elena Zannoni – OSS Japan 2019 6

CTF vs DWARF

● CTF doesn’t store its own encoding
– No extra info used to describe the fields.
– Description is implicit in the representation

● To decode DWARF the “key” is in the debuginfo itself, to decode CTF the
key is the specification

● DWARF: model everything in C and everything to do with the mapping
between C and the hardware

● CTF: Type identifiers are derived by array offsets
● CTF: Space saving (for instance reuse strings from ELF string table)
● CTF: only model the type system and mapping from symtab entries to

types
● CTF: no location lists, expressions, stack machines

Elena Zannoni – OSS Japan 2019 7

Additions to the GNU Toolchain

● CTF generation in GCC (new switch -gt)
● GDB support for debugging
● Binutils includes:

– CTF handling in objdump and readelf
– Linker modifications
– Libctf library

Elena Zannoni – OSS Japan 2019 8

How to use it
● Compile with -gt with level either 0, 1 or 2

– Level 0 : turns off the CTF generation
– Level 1 : (reserved for later use) generate backtrace info only
– Level 2 : complete CTF generation (default)

● Objdump with
– --ctf=SECTION

– --ctf-parent=SECTION

● Readelf with
– --ctf=SECTION

– --ctf-symbols=SECTION

– --ctf-strings=SECTION

Elena Zannoni – OSS Japan 2019 9

/tmp/gcc/bin/ld :

section size addr
.interp 28 4194984
.note.gnu.build-id 36 4195012
.note.ABI-tag 32 4195048
.gnu.hash 172 4195080
.dynsym 3264 4195256
.dynstr 1116 4198520
.gnu.version 272 4199636
.gnu.version_r 144 4199912
.rela.dyn 216 4200056
.rela.plt 2808 4200272
.init 23 4206592
.plt 1888 4206624
.text 949825 4208512
.fini 9 5158340
.rodata 1447296 5160960
.eh_frame_hdr 19172 6608256
.eh_frame 122760 6627432

.init_array 8 6757888

.fini_array 8 6757896

.dynamic 480 6757904

.got 16 6758384

.got.plt 960 6758400

.data 25136 6759360

.bss 22976 6784512

.comment 68 0

.debug_aranges 6320 0

.debug_info 4323894 0

.debug_abbrev 144836 0

.debug_line 750267 0

.debug_str 231568 0

.debug_loc 2069864 0

.debug_ranges 179760 0

.ctf 212598 6815680
Total 10517820

% size -A /tmp/gcc/bin/ld

Elena Zannoni – OSS Japan 2019 10

More Details
● CTF is Compressed:

– When size of CTF is above threshold (currently 4 KBytes)
– Done at writeout time
– Compress type table, string table, not the header
– Flag in header indicates if it’s been compressed

● CTF can coexist with DWARF
● CTF is not stripped by default
● RPMs:

– DWARF info included in debuginfo rpms
– CTF info included in binary rpm

● Standard ELF symbol table must exist, CTF uses the structure and data
of the symbol table to avoid storing redundant information.

Elena Zannoni – OSS Japan 2019 11

Structure of CTF Information

Elena Zannoni – OSS Japan 2019 12

Structure of CTF Information

● ctf_file_t data structure
● “Containers” (or “Dictionaries”) are collections of types.
● A CTF "Container" (or “Dictionary”) has a header and a

number of sections:
– Header
– Label section
– Data object section: map 1:1 to the symbols of type STT_OBJECT
– Function info section : map 1:1 to the symbols of type STT_FUNC
– Variable info section
– Data type section
– String table: same format as a normal ELF string table

Elena Zannoni – OSS Japan 2019 13

Header of a CTF Dictionary

● Preamble
– Magic number (determines endianness)
– CTF Version number (an integer)
– Various Flags

● Reference to the parent dictionary
– Used in case of conflicting types
– Dictionary name (from the name of corresponding

translation unit)

Elena Zannoni – OSS Japan 2019 14

Data Type Section

● An array of variable length entries, each is a struct
ctf_stype (or struct ctf_type) followed by optional
variable-length data.

● Each type has an ID derived from its index in the array
● Two types of elements in the array depending on the

size of the type
● The name of the type is represented by either its offset

in the ELF string table, or its offset in the local (CTF)
string table (if not present in the ELF string table)

Elena Zannoni – OSS Japan 2019 15

typedef struct ctf_stype

{

 uint32_t ctt_name; /* Reference to name in string table. */

 uint32_t ctt_info; /* Encoded kind, variant length. */

 union

 {

 uint32_t ctt_size; /* Size of entire type in bytes. */

 uint32_t ctt_type; /* Reference to another type. */

 };

} ctf_stype_t;

Elena Zannoni – OSS Japan 2019 16

Representing Types
ctt_info:

● kind is a constant with value CTF_K_* (one per type), such

as CTF_K_INTEGER, CTF_K_FUNCTION, CTF_K_STRUCT,
etc

● isroot: it is 1 if type is a named top-level type

● vlen (variable length): size of the type-kind-specific
properties that follow.

● Type descriptions (analogous to DWARF attributes):
– For functions: it is a list of argument types, with the ctt_type being

the return type;
– For integer and floating-point types use flags packed into a single

uint32_t in the variant data encoding things like format, etc

isroot vlenkind

024252631

Elena Zannoni – OSS Japan 2019 17

CTF Versioning

● V1: Original version from Solaris
● V2: Ported to Linux for DTrace

– increase the max number of types
– Increase max number of struct and union members and enumerated values
– Increase the number of type kinds to 64 (for future expansion).
– No ABI change
– Versioning of some constants

● V3: Still in flux
– Header changes
– Additional CTF_K_* values
– Other…

● V4: in initial planning stage
● Maintain compatibility

Elena Zannoni – OSS Japan 2019 18

% PATH=/tmp/gcc/bin:$PATH objdump --ctf=.ctf /tmp/gcc/bin/ld

/tmp/gcc/bin/ld: file format elf64-x86-64
Contents of CTF section .ctf:
 Header:
 Magic number: dff2
 Version: 4 (CTF_VERSION_3)
 Flags: 0x1 (CTF_F_COMPRESS)
 Variable section: 0x0 -- 0xedf (0xee0 bytes)
 Type section: 0xee0 -- 0x133db3 (0x132ed4 bytes)
 String section: 0x133db4 -- 0x14cbfc (0x18e49 bytes)
 Labels:
 Data objects:
 Function objects:
 Variables:
 _xexit_cleanup -> a7e: void (*)() (size 0x8) -> a7d: void () (size 0x0)
 bfd_x86_64_arch -> 53ee: const struct bfd_arch_info (size 0x50) -> 238: struct bfd_arch_info (size 0x50)
 iamcu_elf32_vec -> afe9: const struct bfd_target (size 0x370) -> 286: struct bfd_target (size 0x370)
 bfd_last_cache -> c9b6: struct bfd * (size 0x8) -> 1f4: struct bfd (size 0x6)
 _CTF_NULLSTR -> 39bf: const char [0] (size 0x0)
[...]

 Types:
 1: long int (size 0x8)
 [0x0] (ID 0x1) (kind 1) long int (aligned at 0x8, format 0x1, offset:bits 0x0:0x40)
 2: ptrdiff_t (size 0x8) -> 1: long int (size 0x8)
 [0x0] (ID 0x2) (kind 10) ptrdiff_t (aligned at 0x8)
[...]

 Strings:
 0:
 1: A
 3: AOUTHDR
 b: AOUTHDR64
 15: AddressOfEntryPoint
 29: Age
 2d: B

Elena Zannoni – OSS Japan 2019 19

Cross reference for ld .ctf section dump in previous
slide (for clarity)

● void (*_xexit_cleanup) (void);
● static const bfd_arch_info_type

bfd_x86_64_arch
● extern const bfd_target iamcu_elf32_vec;
● typedef long ptrdiff_t;
● #define CTF_K_TYPEDEF 10

Elena Zannoni – OSS Japan 2019 20

Multiple Translation Units – Linker (ld)

● GCC generates one raw .ctf section per object file
● It is the linker's job to take a bunch of object files with one .ctf each

and emit a unified type listing (dictionary) removing duplicates.
● ld walks through each translation unit (TU)’s dictionary and adds

every newly encountered type in turn to a new single Dictionary.
● If there is a type conflict, it creates a child Dictionary for that TU and

adds the type there instead.
● Conflicting types are types that have the same name but different

definitions is separate TUs. Such as:
– struct foo {int bar;} and union foo {char *baz;}

– typedef int foo_t and typedef long foo_t

● In the end, ld produces one large shared dictionary (parent) and a
few tiny sub-dictionaries (children).

Elena Zannoni – OSS Japan 2019 21

Libctf

● Used to write and read ctf data
● Used by debugger and linker
● ctf_add_<type> (): build an element of that type
● ctf_open(), ctf_close(): open and close a ctf

container/dictionary
● Lookup and iterator functions
● Header File: include/ctf-api.h (used by the

debugger)

Elena Zannoni – OSS Japan 2019 22

Upstreaming Status
● Still very much a work in progress
● Binutils:

– readelf, objdump modifications (May 2019)
– Libctf (May 2019)
– Linker work: posted (July 2019). More work needed.
– Few bugfixes and improvements: posted/committed (June & July)
– Hopefully in next release of binutils (2.33) (for reference, binutils 2.32 released Feb 2019)

● GCC:
– Initial set of patches for CTF generation: posted few revisions (May / June)
– Undergoing more modifications based on reviews
– New version of patch under testing now
– Link time optimization (LTO) WIP to be posted next
– Hopefully in gcc 10 (in 2020) (for reference gcc 9.1 released May 2019)

● GDB:
– Posted, under review (July 2019)
– Hopefully in next release of GDB (8.4) (for reference, gdb 8.3 released May 2019)

Elena Zannoni – OSS Japan 2019 23

Observations
Program DWARF (all

sections)
(bytes)

CTF
(dwarf2ctf)
(bytes)

CTF
uncompressed
(bytes)

CTF
uncompressed
types (bytes)

CTF
uncompressed
strings (bytes)

Kernel
5.2 +
DTrace

1624364740 6677225 13910391 5984032 7138583

Coreutils
ls

146456 11567 29174 13028 14939

GAS
2.30

1180929 58162 177774 66612 107851

emacs
26.1.50

5582440 123902 349295 142232 179184

X.org
1.20.3

5305506 131314 418567 272336 138096

GS 9.27 11679906 164675 502545 293216 193514

Gtk
3.24.7

8499254 213839 713263 292712 382680

Elena Zannoni – OSS Japan 2019 24

Observations (*)

(*) Kernel Omitted from graph

Coreutils ls GAS 2.30 emacs 26.1.50 X.org 1.20.3 GS 9.27 Gtk 3.24.7
0

2000000

4000000

6000000

8000000

10000000

12000000

DWARF (all sections)

CTF (dwarf2ctf)

CTF uncompressed

CTF uncompressed types

CTF uncompressed strings

S
iz

e
 in

 B
y

te
s

Elena Zannoni – OSS Japan 2019 25

Reductions relative to DWARF
(higher is better for CTF)

Elena Zannoni – OSS Japan 2019 26

Future Development

● Discussions planned at Linux Plumbers Conference in
September 2019 at the Toolchain MC

● Add 2 new index sections (objects and functions), for cases
when the order of the symbols in the symtab is not known

● Link Time Optimization (LTO)
● More compactness and optimizations
● Write up the specification document (!!) (right now ctf.h)
● Backtracer
● Expand to other languages beyond C

