Building a Scalable Data Science & Machine Learning Cloud using Kubernetes

Murali Paluru
Principal Software Engineer

https://slack.rancher.io (leodotcloud)
https://github.com/leodotcloud
https://twitter.com/leodotcloud
https://linkedin.com/in/leodotcloud
Problem(s) with the current platform

- It all started out with a small team of Data Scientists.
- As the team scaled, the (on-prem) server resources were scaled up too.
- But after a point, the server became a bottle neck!
- Dependency hell
- Installation of new versions of software/library took a long time due to IT processes.

- What can be done?
Requirements for the new platform

- Scalability
 - Easily accommodate team growth
- Elasticity
 - Scale up or down the resources based on usage
- Multi Cloud support
- High Availability
- Resource limits
- Authentication/Authorization
- Storage Integration
- Self Service
- Ease of use
Kubernetes for the rescue!

- **Scalability**
 - Easily accommodate team growth
- **Elasticity**
 - Scale up or down the resources based on usage
- **Multi Cloud support**
- **High Availability**
- **Resource limits**
- **Authentication/Authorization**
- **Storage Integration**
- **Self Service**
- **Ease of use**
Plan

1. Containerize the DS/ML environments/workloads
2. Private Registry
3. SSL Certificates for secure communication
4. Utilize wildcard DNS for Ingresses of the workloads
5. Integrate with LDAP/AD
6. NFS support
7. Build a Highly Available (HA) workload cluster
8. Launch DS/ML workloads
Kubernetes is awesome, but …

- It’s not easy to use!
- Data Scientists don’t have time to get a PhD in Kubernetes
- Explore third party solutions to provide a simpler user experience
- Rancher
Rancher makes it easy, but ...

- A Data Scientist still has to learn about Kubernetes Concepts

- Can it be made much simpler? (Well, let’s build one!)
Quick Demo
Behind the Scenes
Registry

- Evaluated multiple options
- Docker Hub was not an option as AWS, GCP, Azure were already being consumed
- Self hosting is quite tedious
- ECR provides a per-AZ endpoint, hard to manage config
- GCR provided a single endpoint with global replication

Cons of GCR:

- The credentials are not simple token values, huge json blob
Main workloads

- **RStudio** (R programming language)
 - Various versions of R
 - Dependencies (Installation takes a lot of time)
 - Private libraries
 - Open source RStudio container image doesn’t support LDAP integration

- **Jupyter** (Python programming language)
 - Various versions of Python
 - Conflicting packages
 - Private packages
 - Hard to integrate LDAP support

Disable container auth (and use Ingress authentication)
High Availability

- Use of multiple availability zones (AZ)
- Redundancy (scale=n)
 - Multiple etcd nodes (1, 3, 5 …)
 - Redundant control plane, ingress nodes
 - Workers in different AZs
- Cons of availability zones with EBS:
 - Once a PVC is created in a particular AZ, a dependant workload can’t move to a different AZ without loss of data
 - In case of AZ failure, not all users are affected, but it’s hard to migrate.
- Future work: Investigate and use EFS
Ingress & DNS

- Easy to bookmark URLs for users
- Wild card DNS
 - Scalable
 - No more change requests after the first one
- Ingress authentication
- SSL Termination
 - Terminate on external LB
 - Reduce overhead on the cluster resources
 - Use Wildcard SSL certificate
- Future work:
 - Input from user for the name of workloads
Authelia

- It’s an open-source full-featured authentication server
- Pros:
 - Per Ingress authentication
 - Easy to setup and use
 - Supports multiple auth backends
- Cons:
 - Doesn’t support a config API endpoint (needs to restart Pod on config change)
- https://github.com/clems4ever/authelia
Storage

- **NFS**
 - Easy to guess the shares (use UUID)
 - Could have used dynamic provisioner

- **EBS** (Initial platform was built using AWS)
 - Pre-create the PVC
 - Mainly for persisting user settings, non critical data
Resource Limits

- One user’s workload shouldn’t impact another user’s
 - Use of Requests/Limits of CPU and Memory
- Different worker planes for various workloads
 - Use of Taints/Tolerations
- Cons:
 - Request/Limits > Node Capacity?
 - Fragmentation
- Future work:
 - Support for GPUs
Summary

- Kubernetes is a great platform for running Data Science/Machine Learning workloads
- Managed Kubernetes Services reduce the overhead of managing master nodes
- Providing a simple UX for end users still places a lot of burden on the cluster operator
- Use a higher level framework instead of working with native k8s manifests
- Support for other DS/ML projects
- Coming soon: https://github.com/k4ds
Questions?
Thank you!