
Building a Scalable Data Science & 
Machine Learning Cloud 

using Kubernetes
Murali Paluru
Principal Software Engineer

https://slack.rancher.io (leodotcloud) https://github.com/leodotcloud
https://twitter.com/leodotcloud https://linkedin.com/in/leodotcloud

https://slack.rancher.io
https://github.com/leodotcloud
https://twitter.com/leodotcloud
https://linkedin.com/in/leodotcloud


Problem(s) with the current platform
- It all started out with a small team of Data Scientists.
- As the team scaled, the (on-prem) server resources were scaled up too.
- But after a point, the server became a bottle neck!
- Dependency hell
- Installation of new versions of software/library took a long time due to IT 

processes.

- What can be done?



Requirements for the new platform
- Scalability

- Easily accommodate team growth

- Elasticity
- Scale up or down the resources based on usage

- Multi Cloud support
- High Availability
- Resource limits
- Authentication/Authorization
- Storage Integration
- Self Service
- Ease of use



Kubernetes for the rescue!
- Scalability

- Easily accommodate team growth

- Elasticity
- Scale up or down the resources based on usage

- Multi Cloud support
- High Availability
- Resource limits
- Authentication/Authorization
- Storage Integration
- Self Service
- Ease of use

✔
✔
✔
✔
✔
✔
✔

?
✔



Plan
1. Containerize the DS/ML environments/workloads
2. Private Registry
3. SSL Certificates for secure communication
4. Utilize wildcard DNS for Ingresses of the workloads
5. Integrate with LDAP/AD
6. NFS support
7. Build a Highly Available (HA) workload cluster
8. Launch DS/ML workloads



Kubernetes is awesome, but … 
- It’s not easy to use!
- Data Scientists don’t have time to get a PhD in Kubernetes

- Explore third party solutions to provide a simpler user experience
- Rancher



Rancher makes it easy, but ...
- A Data Scientist still has to learn about Kubernetes Concepts

- Can it be made much simpler? (Well, let’s build one!)



Quick Demo



Behind the Scenes





Registry
- Evaluated multiple options
- Docker Hub was not an option as AWS, GCP, Azure were already being 

consumed
- Self hosting is quite tedious
- ECR provides a per-AZ endpoint, hard to manage config
- GCR provided a single endpoint with global replication

Cons of GCR:

- The credentials are not simple token values, huge json blob



Main workloads
- RStudio (R programming language)

- Various versions of R
- Dependencies (Installation takes a lot of time)
- Private libraries
- Open source RStudio container image doesn’t support LDAP integration

- Jupyter (Python programming language)
- Various versions of Python
- Conflicting packages
- Private packages
- Hard to integrate LDAP support

Disable container auth (and use Ingress authentication)



High Availability
- Use of multiple availability zones (AZ)
- Redundancy (scale=n)

- Multiple etcd nodes (1, 3, 5 …)
- Redundant control plane, ingress nodes
- Workers in different AZs

- Cons of availability zones with EBS:
- Once a PVC is created in a particular AZ, a dependant workload can’t move to a different AZ 

without loss of data
- In case of AZ failure, not all users are affected, but it’s hard to migrate. 

- Future work: Investigate and use EFS



Ingress & DNS
- Easy to bookmark URLs for users
- Wild card DNS

- Scalable
- No more change requests after the first one

- Ingress authentication
- SSL Termination

- Terminate on external LB
- Reduce overhead on the cluster resources
- Use Wildcard SSL certificate

- Future work:
- Input from user for the name of workloads



Authelia
- It’s an open-source full-featured authentication server
- Pros:

- Per Ingress authentication
- Easy to setup and use
- Supports multiple auth backends

- Cons:
- Doesn’t support a config API endpoint (needs to restart Pod on config change)

- https://github.com/clems4ever/authelia

https://github.com/clems4ever/authelia


Storage
- NFS

- Easy to guess the shares (use UUID)
- Could have used dynamic provisioner

- EBS (Initial platform was built using AWS)
- Pre-create the PVC
- Mainly for persisting user settings, non critical data



Resource Limits
- One user’s workload shouldn’t impact another user’s

- Use of Requests/Limits of CPU and Memory

- Different worker planes for various workloads
- Use of Taints/Tolerations

- Cons:
- Request/Limits > Node Capacity?
- Fragmentation

- Future work:
- Support for GPUs 



Summary
- Kubernetes is a great platform for running Data Science/Machine Learning 

workloads
- Managed Kubernetes Services reduce the overhead of managing master 

nodes
- Providing a simple UX for end users still places a lot of burden on the cluster 

operator
- Use a higher level framework instead of working with native k8s manifests
- Support for other DS/ML projects
- Coming soon: https://github.com/k4ds

https://github.com/k4ds


Questions?



Thank you!


