Creating Your Own Project
on-top of AGL

From minimal image to own project.
How to reuse AGL in your own company.

Jan-Simon Modller, jsmoeller@linuxfoundation.org

Intro

Jan-Simon Moller

AGL Release Manager

jsmoeller@linuxfoundation.org

dI9pf @ freenode

Topics

e Summary
e Q/A

What and why ?!l

Show how to add software to AGL
Point out common pitfalls
Highlight best practices

Changes in project can have a big impact
on the outcome of the build

o need to be careful and aware
Vision and goal is to create

o SDK per architecture (not per board)

o Limit SDK variants !!

o Common package feed

AGL repo checkout (since HH)

bsp

external

meta-agl

meta-agl-demo
meta-agl-cluster-demo
meta-agl-telematics—-demo
meta-agl-devel
meta-agl-extra

Board support

External repositories (=upstream)
AGL 'core' layers

AGL 'demo layers

AGL 'devel' layers

The Quick & Dirty

clone AGL

just create/copy your recipe in some layer (or use devtool - same outcome)
hack image reeipe/packagegroup

call aglsetup.sh & bitbake

repobuild-quick-and-dirty> repo status

project meta-agl-demo/ (*** NO BRANCH **¥*)
-- recipes-demo-hmi/foo-gnd/foo-gnd git.bb
-m recipes-platform/packagegroups/packagegroup-agl-demo-platform.bb

Simple and straightforward

Not persistent

Can't share

Can't maintain

Not updated with repo sync

Image: public domain

The Nonpresistent

e clone AGL and call

meta-agl/scripts/aglsetup.sh agl-demo agl-devel agl-localdev
e then (within build/) we use bitbake-layers to create the layer folder
bitbake-layers create-layer —--priority 20 ../meta-localdev/

e add your files underneath meta-localdev/

bsp

build

external

meta-agl
meta-agl-cluster—-demo
meta-agl-demo
meta-agl-devel
meta-agl-extra
meta-agl-telematics—-demo
meta-localdev

meta-localdev/

COPYING.MIT

| -— README

conft
"—- layer.conf
recipes-platform
'—-- packagegroups
"—- packagegroup-X.bbappend
recipes—-example
—- example
"-- example 0.1.bb

e Own changes in separate YP compatible e Not persistent

layer e Need to redo 'every time' when cloned
e Can be shared e Not updated with repo sync
e (Can be reused

The Good

e clone AGL and
e clone your project as meta-localdev

git clone https://foo.bar/projects/meta-baz.git meta-localdev

o call
meta-agl/scripts/aglsetup.sh agl-demo agl-devel agl-localdev

e call bitbake

https://foo.bar/projects/baz.git

bsp

build

external

meta-agl
meta-agl-cluster—-demo
meta-agl-demo
meta-agl-devel
meta-agl-extra
meta-agl-telematics—-demo
meta-localdev

meta-localdev/ (cloned from XYZ)

COPYING.MIT

| -— README

conft
"—- layer.conf
recipes-platform
'—-- packagegroups
"—- packagegroup-X.bbappend
recipes—-example
—- example
"-- example 0.1.bb

The Good

e Own changes in separate YP compatible e Need to redo 'every time' when cloned
layer e Not updated with repo sync

e Can be shared

e (Can be reused

e Recipes persistent’ in git

The Best

clone AGL

add your add-on manifestto . repo/local manifests/
call repo sync (again)

call aglsetup.sh and bitbake as usual

repo init -u https://gerrit.automotivelinux.org/gerrit/AGL/AGL-repo.git
mkdir .repo/local manifests/

curl https://raw.githubusercontent.com/dl9pf/meta-own-project/master/.project-manifest.xml > \
.repo/local manifests/meta-own-project.xml

repo sync

.project-manifest.xml:

<?xml version="1.0" encoding="UTF-8"7?>
<manifest>

<remote name="github" fetch="https://github.com/" />
<project name="dl9pf/ meta-own-project" remote="github" path=" meta-own-project" >

<copyfile src=".project-manifest.xml" dest=".repo/local manifests/ meta-own-project.xml" />
</project>

</manifest>

Own changes in separate YP compatible
layer

Can be shared

Can be reused

Updated when syncing with repo

Need to add once during initial checkout
(but this is perfectly scriptable)

Maintain own repo manifest with your projects Downside: need to sync/rebase your repo
added already. manifest with AGL all the time yourself!

Best Practices

Create your own image recipe by
including either

o aglimage-minimal.inc

o agl-image-ivi.inc

o agl-demo-platform.inc

o agl-cluster-demo-platform.inc
Create a packagegroup if more packages

are added

my-layer/recipes-platform/images/my—-image.bb:

DESCRIPTION = "FOO image contains a simple FOO UI."

require agl-image-ivi.inc
LICENSE = "MIT"

IMAGE FEATURES append = " \

add packages for FOO (include foo pkggroup)
IMAGE INSTALL append = " \
packagegroup-agl-foo \

here

Profiles build on each-other:

| -—— meta-agl
"—-—- meta-agl-profile- core
| -—— meta-agl-profile- telematics
"—-—- meta-agl-profile- graphical

<- SDK w/o gfx components

| -— meta-agl-profile- graphical-html5 <- SDK w/ HTMLS5

| | -—— meta-agl-demo-htmlb

| -— meta-agl-profile- graphical-qt5
| | -— meta- agl-demo

| "—-- meta-agl- cluster-demo

"—-— meta-agl-profile- hud

<- soon: HTML5 IVI demo

<- SDK w/ gt5

<- AGL IVI demo (gtb)
<- AGL cluster demo

<- placeholder for hud

e A project sits on-top of a stack

e Rules:
o Do not use .bbappends
o Do not use .bbappends
o Do not use .bbappends

Do not modify the stack from within the toplevel project.

e Your code needs to be MACHINE-independent (AGL has multiple arches!)

e If there are different optimizations (e.g. video decoder pipeline)
o Have the generic variant (e.g. software decoding) as the default
o Then either (in order of preference):
m runtime-detect the available options and switch
m provide a configuration file for the user to switch from default to optimized
e and make it available as build-time switch as well !

better generic first, then specific as option

"Upstream first" whenever possible

Submit your changes early

Small changes are easier to review

if there are commonalities, rework things to include the common set

AGL is a great stack
for your
automotive solution.

