
Creating Your Own Project
on-top of AGL
From minimal image to own project.
How to reuse AGL in your own company.

Jan-Simon Möller, jsmoeller@linuxfoundation.org

Intro

Jan-Simon Möller

AGL Release Manager

jsmoeller@linuxfoundation.org

dl9pf @ freenode

Topics

● What and why ?
● The Quick & Dirty
● The Nonpersistent
● The Good
● The Best
● Best Practices
● Summary
● Q/A

How to throw things in for testing...

The better way of throwing stuff in ...

How to make things more persistent ...

A good way to maintain your project ...

What and why ?!!

What and why ?

● Show how to add software to AGL
● Point out common pitfalls
● Highlight best practices

● Changes in project can have a big impact
on the outcome of the build
○ need to be careful and aware

● Vision and goal is to create
○ SDK per architecture (not per board)
○ Limit SDK variants !!
○ Common package feed

AGL repo checkout (since HH)

.
|-- bsp
|-- external
|-- meta-agl
|-- meta-agl-demo
|-- meta-agl-cluster-demo
|-- meta-agl-telematics-demo
|-- meta-agl-devel
`-- meta-agl-extra

● Board support
● External repositories (=upstream)
● AGL 'core' layers
● AGL 'demo' layers
● AGL 'devel' layers

The Quick & Dirty

The Quick & Dirty

● clone AGL
● just create/copy your recipe in some layer (or use devtool - same outcome)
● hack image recipe/packagegroup
● call aglsetup.sh & bitbake

repobuild-quick-and-dirty> repo status
project meta-agl-demo/ (*** NO BRANCH ***)
 -- recipes-demo-hmi/foo-qnd/foo-qnd_git.bb
 -m recipes-platform/packagegroups/packagegroup-agl-demo-platform.bb

The Quick & Dirty
● Simple and straightforward ● Not persistent

● Can't share
● Can't maintain
● Not updated with repo sync

The Nonpresistent

The Nonpresistent

● clone AGL and call

meta-agl/scripts/aglsetup.sh agl-demo agl-devel agl-localdev

● then (within build/) we use bitbake-layers to create the layer folder

bitbake-layers create-layer --priority 20 ../meta-localdev/

● add your files underneath meta-localdev/

The Nonpresistent
.
|-- bsp
|-- build
|-- external
|-- meta-agl
|-- meta-agl-cluster-demo
|-- meta-agl-demo
|-- meta-agl-devel
|-- meta-agl-extra
|-- meta-agl-telematics-demo
`-- meta-localdev

meta-localdev/
|-- COPYING.MIT
|-- README
|-- conf
| `-- layer.conf
|-- recipes-platform
| `-- packagegroups
| `-- packagegroup-X.bbappend
`-- recipes-example

`-- example
 `-- example_0.1.bb

The Nonpresistent
● Own changes in separate YP compatible

layer
● Can be shared
● Can be reused

● Not persistent
● Need to redo 'every time' when cloned
● Not updated with repo sync

The Good

The Good

● clone AGL and
● clone your project as meta-localdev

git clone https://foo.bar/projects/meta-baz.git meta-localdev

● call

meta-agl/scripts/aglsetup.sh agl-demo agl-devel agl-localdev

● call bitbake

https://foo.bar/projects/baz.git

The Good
.
|-- bsp
|-- build
|-- external
|-- meta-agl
|-- meta-agl-cluster-demo
|-- meta-agl-demo
|-- meta-agl-devel
|-- meta-agl-extra
|-- meta-agl-telematics-demo
`-- meta-localdev

meta-localdev/ (cloned from XYZ)
|-- COPYING.MIT
|-- README
|-- conf
| `-- layer.conf
|-- recipes-platform
| `-- packagegroups
| `-- packagegroup-X.bbappend
`-- recipes-example

`-- example
 `-- example_0.1.bb

The Good
● Own changes in separate YP compatible

layer
● Can be shared
● Can be reused
● Recipes 'persistent' in git

● Need to redo 'every time' when cloned
● Not updated with repo sync

The Best

The Best

● clone AGL
● add your add-on manifest to .repo/local_manifests/
● call repo sync (again)
● call aglsetup.sh and bitbake as usual

repo init -u https://gerrit.automotivelinux.org/gerrit/AGL/AGL-repo.git

mkdir .repo/local_manifests/

curl https://raw.githubusercontent.com/dl9pf/meta-own-project/master/.project-manifest.xml > \
.repo/local_manifests/meta-own-project.xml

repo sync

The Best
.project-manifest.xml:

<?xml version="1.0" encoding="UTF-8"?>
<manifest>

 <remote name="github" fetch="https://github.com/" />
 <project name="dl9pf/ meta-own-project" remote="github" path=" meta-own-project" >
 <copyfile src=".project-manifest.xml" dest=".repo/local_manifests/ meta-own-project.xml" />
 </project>

</manifest>

The Best
● Own changes in separate YP compatible

layer
● Can be shared
● Can be reused
● Updated when syncing with repo

● Need to add once during initial checkout
(but this is perfectly scriptable)

The Best (also)
Maintain own repo manifest with your projects
added already.

Downside: need to sync/rebase your repo
manifest with AGL all the time yourself!

Best Practices

Best Practices
● Create your own image recipe by

including either
○ agl-image-minimal.inc
○ agl-image-ivi.inc
○ agl-demo-platform.inc
○ agl-cluster-demo-platform.inc

● Create a packagegroup if more packages
are added

my-layer/recipes-platform/images/my-image.bb:

DESCRIPTION = "FOO image contains a simple FOO UI."

require agl-image-ivi.inc

LICENSE = "MIT"

IMAGE_FEATURES_append = " \
"

add packages for FOO (include foo pkggroup) here
IMAGE_INSTALL_append = " \

packagegroup-agl-foo \
"

AGL Profiles
Profiles build on each-other:

|-- meta-agl
 `-- meta-agl-profile- core <- SDK w/o gfx components
 |-- meta-agl-profile- telematics
 `-- meta-agl-profile- graphical
 |-- meta-agl-profile- graphical-html5 <- SDK w/ HTML5
 | |-- meta-agl-demo-html5 <- soon: HTML5 IVI demo
 |-- meta-agl-profile- graphical-qt5 <- SDK w/ qt5
 | |-- meta- agl-demo <- AGL IVI demo (qt5)
 | `-- meta-agl- cluster-demo <- AGL cluster demo
 `-- meta-agl-profile- hud <- placeholder for hud

Best Practices

● A project sits on-top of a stack
● Rules:

○ Do not use .bbappends
○ Do not use .bbappends
○ Do not use .bbappends

Do not modify the stack from within the toplevel project.

Best Practices

● Your code needs to be MACHINE-independent (AGL has multiple arches!)
● If there are different optimizations (e.g. video decoder pipeline)

○ Have the generic variant (e.g. software decoding) as the default
○ Then either (in order of preference):

■ runtime-detect the available options and switch
■ provide a configuration file for the user to switch from default to optimized

● and make it available as build-time switch as well !

better generic first , then specific as option

Best Practices

● "Upstream first" whenever possible
● Submit your changes early
● Small changes are easier to review
● if there are commonalities, rework things to include the common set

Q/A

AGL is a great stack
for your
automotive solution.

Thanks!
Contact:

Jan-Simon Möller
jsmoeller@linuxfoundation.org

@dl9pf

