

How to make Smart Cities stay smart with Open Source Projects

Yoshitake Kobayashi, Toshiba Corp., CIP TSC Chair Open Source Summit Japan, Tokyo, July 17-19, 2019

Connected Cars

Find and rent cars via smart phone. Monitor fleets and provide service.

Industry

Collect data to improve processes (cost, quality, speed). Minimize downtimes by predictive

Smart City

Multimodal transportation, intelligent traffic control, smart energy management, emergency

Civil Infrastructure and its challenges

"Hidden" Industrial IoT Systems

Building automation

Broadcasting

Healthcare

Industry automation

CNC control

Industrial communication

Open Source Summit Japan 2019

Smart Cities combine consumer & industrial IoT

Consumer IoT

End user interfaces and comfort features

Industrial (grade) IoT

Digital backbone of connected systems

Permanent cloud connection required. Quality and availability: Best effort Low-cost / high volume

CIVIL INFRASTRUCTURE

Complex systems: local intelligence + centralized intelligence 24/7 operation even with no connection to backend. Guaranteed latency, throughput, and responsiveness. Smart Cities need a smart infrastructure IoT technology to be applied to industrial systems

A Power Plant System:

25-60 years products life-cycle

Very reluctant to perform product updates and upgrades of hardware and base software platform

Security ...for millions of devices

The key challenges

- Apply IoT concepts to industrial systems.
- Ensure quality and longevity of products.
- Keep millions of connected systems secure.

Solving the Key Challenges

Speed and efficiency: focus on differentiating parts

Handling increasing complexity with constant development resources

Join forces by leveraging commodity components, partnering, and adapting open source software.

Open source software ensures long-term availability, flexibility, and maintainability without vendor lock-in.

Proprietary

application,

proprietary

operating system

Up to 2000

Facts and Issues: Smart City uses Commodity Software

Facts

- Millions or trillions smart devices
- Similar software components (e.g. Linux)
- Industrial IoT requirements
 - Security
 - Sustainability
 - Industrial-grade

Issues

- A lot of products have to meet IIoT requirements
- Same development and maintenance efforts spent by many companies or even business units
- No common solution for base building blocks

picture taken from Pinterest https://www.pinterest.de/pin/554646510344033382/

CIP is the Solution

Establishing an Open Source Base Layer of industrial-grade software to enable the use and implementation of software building blocks for **Civil Infrastructure Systems**

Open Source Summit Japan 2019

What is "Open Source Base Layer (OSBL)"?

Layered Linux distribution for industrial products, utilizing and influencing the relevant Open Source projects:

Mapping CIP into the company

Layered Linux distribution for industrial products, utilizing and influencing the relevant Open Source projects:

Up to 70% effort reduction achievable for OSS license clearing and vulnerability monitoring, kernel and package maintenance, application adaptation and testing for an individual product.

The backbone of CIP are the member companies

CIP lays the Foundation for Sustainable Smart Cities

CIP governance structure and projects

Open Source Summit Japan 2019

Collaborative development with other OSS projects

Collaborative development with other OSS projects

O CIP SLTS kernel development (Upstream first development)

- Goal
 - Providing CIP kernels with more than 10 years maintenance period
 - Super Long Time Stable kernel
- Status
 - CIP SLTS kernels has been released
 - Linux 4.19.58-cip6 (July 12th)
 - Linux 4.4.185-cip35 (July 12th)
 - <u>https://git.kernel.org/pub/scm/lin</u> <u>ux/kernel/git/cip</u>
 - CIP kernel team participate into LTS review process

Real-time Linux development (PREEMPT_RT)

- Goal
 - CIP joins RT Linux project as Gold member to Work with them to upstream Real-time enhancement
 - Provide CIP SLTS kernel with real-time enhancement by using RT patch
- Status
 - CIP SLTS RT kernels has been released
 - Linux 4.4.166-cip29-rt21
 - Linux 4.19.13-cip1-rt
 - <u>https://git.kernel.org/pub/scm/linux/kernel/git/cip</u>
 - Test results are available on CI-RT
 - <u>https://ci-rt.linutronix.de/RT-Test/</u>

6 CIP Testing

- Goal
 - Providing a test environment to test the CIP kernel and more
 - CI testing for CIP kernel and CIP Core
- Current status
 - First release was B@D
 - <u>https://gitlab.com/cip-</u> project/board-at-desk-single-dev
 - Move to distributed testing environment on AWS with LAVA
 - Integrating with GitLab-CI

4 CIP Core

- Goal
 - Provide a reference implementation with CIP core packages for testing
 - Following implementations are provided
 - Tiny profile
 - E.g. Small IoT devices
 - Generic profile
 - E.g. IoT gateways
- Status
 - CIP Core Tiny profile has been released
 - <u>https://gitlab.com/cip-project/cip-core</u>
 - PoC implementation is available for Debian profile
 - <u>https://gitlab.com/cip-playground/isar-</u> <u>cip-core</u>

Security working group

• Goal

 Provide guidelines and reference implementations to help developers to meet cybersecurity standard requirements (IEC 62443)

• Status

- Started for feasibility study
- A demonstration scheduled at OSS Japan in July

*: Noted that this image is under planning and for only illustrative purposes.

6 Software update working group

• Goal

- Incorporate a common solution for software updates into CIP core
 - Device management
 - Deployment
 - Safe update

• Status

- Selected OSS update tools
- Demonstration will be shown at OSS Japan in July

Summary

- CIP today focuses on
 - Kernel maintenance: maintaining Linux kernels for very long time including realtime support
 - Testing: providing a test infrastructure and evolve tests
 - CIP Core packages: a set of industrial-grade components that require very longterm maintenance including the required build tool chains
 - Security: Improving to have security features and to follow Cyber Security Standard
 - Software update: Incorporate a common solution for software updates into CIP core
 - Collaboration: Linux, Debian/Debian-LTS, Real Time Linux, Reproducble Builds, EdgeX Foundry

- Our Civilization needs an Open Source Base Layer of industrial-grade software
 - CIP provides this, using Linux
- Sustainability is ensured by
 - The backing of big industrial and semiconductor companies
 - Close cooperation with and building with mature Open Source projects (Debian, PREEMPT_RT, KernelCI, ...)
 - Providing suitable tool chains
 - Ensuring in-depth tests
- Contribution and collaboration with upstream projects are the key CIP activities

Join us

CIP for sustainable Smart Cities with Open Source Software

Contact Information and Resources

To get the latest information, please contact:

• CIP Mailing list: cip-dev@lists.cip-project.org

Other resources

- Twitter: @cip_project
- CIP Web site: <u>https://www.cip-project.org</u>
- CIP news: <u>https://www.cip-project.org/news/in-the-news</u>
- CIP Wiki: https://wiki.linuxfoundation.org/civilinfrastructureplatform/
- CIP source code
 - CIP GitLab: <u>https://gitlab.com/cip-project</u>
 - CIP kernel: git://git.kernel.org/pub/scm/linux/kernel/git/cip/linux-cip.git

Question?

Thanks you

Open Source Summit Japan 2019