SYNopsys
Efficient and Effective Fuzz Testing of
Automotive Linux Systems using Agent

Instrumentation
Dennis Kengo Oka and Rikke Kuipers

dennis.kengo.oka@synopsys.com

rikke.kuipers@synopsys.com
Automotive Linux Summit, Tokyo, Japan

2019/7/19

e

W | Y

Dennis Kengo Oka - Automotive Security

 Started Automotive Security in 2006
— Securing over-the-air updates and remote diagnostics

« Senior Solution Architect based in Tokyo but involved in automotive
security globally
» Long experience working with and supporting several OEMs and
suppliers on improving their security processes and practices
 Member of Jaspar (Japan Automotive Software Platform and
Architecture) security working group
— Participating in standardization/best practices work for automotive industry in
Japan
— Contributed to writing “Bluetooth Fuzzing Guideline” shared with
OEMs/suppliers in Japan
» 60+ publications and presentations at e.g. escar, JSAE, SAE World
Congress, Code Blue, IEEE Cybersecurity etc.

SYNOPSYS

© 2019 Synopsys, Inc. 2

. Challenges of fuzzing automotive components
Agent Instrumentation Framework - using
agents on the SUT to improve fuzz testing

Results show It Is possible to detect previously
undetectable exceptions

SYNOPSYS'

Challenges of fuzzing automotive components

© 2019 Synopsys, Inc. 4 S\/nUPS‘/SG

Download Link:
WWW.SYNOPSYS.com/auto-security

Cybersecurity Research Center

CyRC

« Securing the Modern Vehicle:
A Study of Automotive
Industry Cybersecurity
Practices

« 2019 Open Source Security
and Risk Analysis (OSSRA)

© 2019 Sy | Report SYnoesys

http://www.synopsys.com/auto-security

What are the primary factors that lead to vulnerabilities in
automotive software/technology/components?

%
S —— | Coding

The use of insecure/out 0
software components 40%

roduc dovicprmart 555 S >°”

Lack of internal 0
that clarify sec 26%

alicious c ‘%.

—_— b Open-source
Incorrect p- 19% ft
Backen-15%. SO Ware

I Other 2%
© 2019 Synopsys, Inc. 6 S\/nUPS‘/S®

Pressure to meet product deadlines

What are the primary factors that lead to vulnerabilitie
automotive software/technology/components?

Pressure to meet product deadlines

S 71 static Analy:

Lack of understanding/training on secure_ 60“/} — Coverlty

The use of insecure/outd 0
e componen. " P 0.
Lack of internal 0

e ey oy equrmenta | 207"

Malicious cnd- 23% O pe n SO u rce
Incorrect pe- 19% \

Accidental coding errors

I Other 2%

© 2019 Synopsys, Inc. 7

Software Composition Analysis
— Black Duck

, Fuzz Testin
OO0 software — Defensics

SYNOPSYS'

What are the primary factors that lead to vulnerabilities in
automotive software/technology/components?

Pressure to meet product deadlines _ 71%

Lack of understanding/training on 60%

Accidental coding errors _ 55%

Lack of quality assurance and 50%

ot tameons S o
Product development to_ 39%

Lack of internal 0
that clarify sec 26%

Malicious cnd- 23%
Incorrect p- 190/0

I Other 2%
© 2019 Synopsys, Inc. 8 S‘/"UPS‘/S®

Fuzz Testing
— Defensics

Fuzz Testing

» Testing technique where malformed =
or “out-of-specification” inputs are 9 b e K
provided to the SUT (system under

test) which is then observed to detect = & N
exceptions or unintended behavior] ﬁ ®
i ® ru

* Allows developers and testers to

identify unknown vulnerabilities in - ®

their systems and components

© 2019 Synopsys, Inc. 9 S\/nUPS‘/SG

)\

Critical Vulnerabilities Detected by Fuzz Testing

 ASN.1/SNMP various vulnerabilities (2001/2002)

* Apache IPv6-URI vulnerability (2004)

* Image file format various vulnerabilities (2005)

« XML library various vulnerabilities (2009)

* Linux Kernel IPv4 and SCTP several vulnerabilities (2010)
« RSA signature verification vulnerability in strongSwan (2012)
 Heartbleed:OpenSSL vulnerability (2014)

 OpenSSL and GnuTLS several vulnerabilities (2004, 2008, 2012, 2014)
 Badlock:Samba/DCE-RPC denial-of-service vulnerability (2015)

© 2019 Synopsys, Inc. 10 S\/nUPS‘/SG

Real World Example — Two Embedded Systems

Linux
Android

Low level ECU
Powertrain, chassis, body

VI (In-vehicle infotainment), ADAS,
Telematics ECU

Small embedded code base
Model-based development

Open source platforms/libraries
Entire operating systems (AGL)

Safety criticality: High/Low Safety criticality: Low/Medium/High

Security exposure: Low Security exposure: High
© 2019 Synopsys, Inc. 11 / []PS‘/S®

Challenges for Automotive Components

« Difficult to instrument the SUT in a proper way to determine whether there was
an exception or if it has failed or crashed

* E.g., fuzz testing Wi-Fi or Bluetooth, instrumentation typically occurs over the
same protocol that is being fuzzed — this limited instrumentation could lead to
several potential issues going undetected

« Difficult to gather information from the SUT to be able to easier determine the
underlying root causes for the exception or failure

© 2019 Synopsys, Inc. 12 S‘/"[]PS‘/S@

r

Undetected Exceptions on SUT

Fuzz Testing PC

~

Fuzzer

Exceptions on SUT not

detected by just observing

the fuzzed protocol

© 2019 Synopsys, Inc. 13

Protocol being fuzzed

/Application\

SUT

Memory
Leaks

Core dumps

pProcesses
. J

Zombie

SYNOPSYS'

Agent Instrumentation Framework - using

agents on the SUT to improve fuzz testing

© 2019 Synopsys, Inc. 14 S\/nUPS‘/SG

Agent Instrumentation Framework - Concept

* Developers/testers have access to internals of the SUT (e.g., Linux and Android)

* Achieve more efficient and accurate fuzz testing by employing a gray/white box
approach where Agents placed on the SUT assist with the instrumentation

* The Agents provide the fuzzer with detailed instrumentation data from the SUT

* This data is used to determine the fail / pass verdict of a test case and also
provides the developers/testers with valuable information from the SUT

© 2019 Synopsys, Inc. 15 S‘/"[]PS‘/S@

Agent Instrumentation Framework - Modes

Synchronous mode Asynchronous mode
* More control over the Agents » Agents are polled periodically
« Agents can perform various functions * Fuzzer parses incoming syslog
before and after a test case executes messages with instrumentation data
« Allows for automation and using more Cannot tie an exception to a specific
advanced techniques for finding test case but only reports when a
unknown vulnerabilities prespecified condition has been met
» Slower to execute the test run » Advantage is speed of execution with

the loss of accuracy

© 2019 Synopsys, Inc. 16 S‘/"UPS‘/SQ

Overview of Agent Instrumentation Framework

-
Fuzz Testing PC SUT

4)
Fuzzer Agent Instrumentation

UDP/

[Syslog }: Syslog :{ Syslog [Agent]

[Logger
Starter] AgentHandler]

! config.json ;‘"

Server

External : 1
: Client <
Instrumentation CLI J HTTP

)) || /

© 2019 Synopsys, Inc. 17 J _S.‘/DDP_SMSJ

Examples of Agents (1)

* AgentCoreDump
—Looks for a core dump file, if detected will give a fail verdict
—This file can be used to further analyze the state of the process during the crash

* AgentLogTailer
—Monitors a log file
—If a new line is written to the file and matches any of the predefined parameters, it will give a
fail verdict
« AgentProcessMonitor
—Monitors the state of a process
—Gives a fail verdict if the process is down or turned into a zombie process

—Can also monitor the process’ memory usage and give a fail verdict if the usage goes over a
configured limit

© 2019 Synopsys, Inc. 18 S‘/"[]PS‘/SG

Examples of Agents (2)

* AgentPID

—Monitor processes on the SUT with more options
—Can only be run in synchronous mode, otherwise it might generate false positives

—Before each test case is executed, a mapping is made of each predefined process with its
process identifier (PID) and PIDs of its children

—After a test case is executed the same mapping is performed again
—If a process has died its PID will not be present in the new mapping
—If a process has died but restarted then it has new PID

—A fail verdict is issued in both cases

© 2019 Synopsys, Inc. 19 S‘/"[]PS‘/SG

Examples of Agents (3)

* AgentAddressSanitizer

—Finds memory addressability issues and memory leaks using Google’s ASAN framework:

—e.g., Use after free (dangling pointer dereference), Heap buffer overflow, Stack buffer overflow,
Global buffer overflow, Use after return, Use after scope, Initialization order bugs, Memory leaks

—Target software needs to be compiled with additional compiler flags, can only be run in
synchronous mode

—Two configurations: memory leaks and all other addressability issues

—To find memory leaks: target process is killed after each testcase and ASAN’s output is
analyzed

—To find all other addressability issues: the Agent configures ASAN to kill the process upon
finding any issue — this configuration is faster than finding memory leaks

—In both cases, crash trace and if available detailed crash information are reported back to
the fuzzer

© 2019 Synopsys, Inc. 20 S‘/"UPS‘/S@

Examples of Agents (4)

* AgentValgrind
—Finds memory leaks and addressability issues (similar to AgentAddressSanitizer)
—Difference is the mode of operation and speed

—Uses various checkers and profilers from the Valgrind project, which effectively emulates a
hardware layer for the program to run on

—Quite heavy and adds overhead to each test case
—Advantage is that there is no need to recompile target software

© 2019 Synopsys, Inc. 21 S‘/"[]PS‘/S@

Example Configuration Script

"instrumentation method": "external”,
"external™:

"ip": "192.168.0.2",

"port™: B881, -

e oken s MG et Starter script on SUT loads

b | AgentPID which monitors
pefore_run”: | the specified processes

"agents":

"pld monitor": |

"type": "AgentPID",

"executables" [
"wpa supplicant",
"bluetoothd”,
"lightmediascannerd",
"geoclue"™

© 2019 Synopsys, Inc. 22 S‘/"UPS‘/S

Results show It Is possible to detect previously
undetectable exceptions

© 2019 Synopsys, Inc. 23 S\/nUPS‘/SG

Setup of Test Bench

Fuzz Testing PC

/

Defensics

~

|

External
Instrumentation

J

\

)

Client
CLI

SUT

////f Agent Instrumentation ‘\\\\

[Logger
Starter]

[config.json]

|
)

© 2019 Synopsys, Inc. 24

HTTP
JSON

Server

Y

(&

[Agent]

|

AgentHandler J

/

J
SYNOPSYS

Test Setup

* Run in synchronous mode

« Agents used most:

—AgentPID as it requires no extra
configuration or modification of the
system under test

—AgentAddressSanitizer and
AgentValgrind to find memory issues

« Automatically run scripts to enable
the agents and collect results

© 2019 Synopsys, Inc. 25

 Target systems: Linux or Android

* Protocols:
—Browser protocols
—Bluetooth protocols
—Wireless (802.11) protocols
—Messaging protocols

—File format parsing (audio, images,
video)

—CAN-bus

SYNOPSYS

Bluetooth Results

* Found a critical vulnerability where a fuzzed
single frame causes the main Bluetooth
kernel module to crash

» Detected by monitoring the bluetoothd
daemon process using the AgentPID agent

* Since the device has a daemon watchdog
which quickly restarts bluetoothd, this
vulnerability would not have been detected
by just observing the Bluetooth protocol

© 2019 Synopsys, Inc. 26

AgentPID agent

15:25:43.238 python client.py --config pid-
monitor.json instrumentation

15:25:43.640 Instrumentation verdict: FAIL

15:25:43.640 FAIL Agent: pid_monitor Info: Agent
pid_monitor says

15:25:43.640 ofonod : ['353']
15:25:43.640 bluetoothd : ['896'] -> [].
15:25:43.640 bluetoothgateway : [547]
15:25:43.640 mediaserver : [154]
15:25:43.640 wez-launch :['114']
15:25:43.640 wez :['114', '130']
15:25:43.640 ogg streamhandler : [11]
15:25:43.640 pulseaudio : ['775']
15:25:43.640 audio_daemon : ['839']
15:25:43.640 media_engine_app : [145]

SYNOPSYS

WiIi-FI Results

Log Tailer agent

« Found a critical vulnerability where a fuzzed single
frame caused several kernel modules to crash

[+0.00@032] ------------[cut here]------------
@00P19] WARNING: CPU: 3 PID: 912 at drivers/met/wireless/|IEGB

[+0.888082] Modules linked in: loop(0) R

» Non-authenticated frame — could be sent by anyone

in
r ‘I‘
'
&

[+@2.ee2083] cPU: 3 PID: 912 Comm: [N Tzinted: G T
° Log Taller agent found thIS issue by talllng Syslog [+2.8885363] task: edfbab4@ task.stack: ecfEe283
. [+8.885863] EIP: iwl mvm_tx mpdu+8xla?/8x3d7 [iwlmvm]
with the keywords “stack”, “crash” and several kernel | .c.co0037 srines: so10286 cou: 3
module names [+28.008802] EAX: BEOBAE1f EBX: eeVScded ECX: 4578344 EDX: fde6zbdc
[+2.808082] ESI: oB0B28a2 EDI: 2B8@GA1lad EBP: ecfeibdc ESP: ecf&ibad
[+2.002083] D5: 087b ES5: @07b F5: 98dE G5: 0Bae 55: 906
[+0.009082] CRe: 58050833 CR2: ab3deded CR3: Zbcdiecd CR4: 28189613
* This vulnerability would not have been detected by [-2.209902] cait Trace
. [+0.882741] iwl_mvm_tx_skb+8x5b/@x139 [iwlmwvm]
only observing the Wi-Fi communication as the [+0.005071] iwl_mym_mac_tx+0x3c/@xl44 [iwlmym]
kernel Watchdog restarted the aﬁected modules [+8.8858638) : iwl_mvm_stop_ap_ibss+@x12e/Bx12e [iwlmvm]
_ _ [+0.085352] 1ieee88211 tx frags+Bx17b/@x192 [mac8@211]
Immediately

© 2019 Synopsys, Inc. 27 S‘/"[]PS‘/SG

MQTT Results

AgentAddressSanitizer
« Found a memory leak in the popular MQTT 21:34:37 TEST CASE #29
. 21:34:37 mott.connect-disconnect.connect.element: Underflow of 12 -10 =2 oo
broker MOSC]UIttO 21:34:37 tcp 45264 --= localhost:1883 4 MQTT CONNECT ANOMALY!

21:34:37 Receliving connack over tcp Tailed: expected (@b@eile) but got ()
21:34:37 Instrumenting (1. round)...
21:34:37 Susr/binspythonz Shomespocs/synopsyssaif/client. py --config Sl

e Access to the source code of the MQTT broker 21:34:37 Instrumentation verdict: FAIL

21:34:37 FAIL Agent: memory_mgtt Info: Agent memory_mgtt says Memory leak 1

21:34:37
21:34:37
° AgentAddreSSSanitizer tO teSt for memOry 21::3; ==20==ERROR: LeakSanitizer: detected memory Lleaks
addressab”ity issues and memory |eakS 21:34:37 Direct leak of 1 byte(s) in 1 object(s) allocated from:
21:34:37 #0 Ox7FTEar5d8led99 in _ interceptor_malloc sbuildfgoccs/srosgoos]
21:34:37 #1 ox56218adca%e3d in _mosquitto_malloc (Shomespecsmosquittossr
21:34:37 #2 0Ox56218adepsnz in mosquitto read string {/home/poc/mosquit
° I 1 it 21:34:37 #3 0x56218ade5ds85 in mgtt3_handle_connect (/homespoc/mosquitts
Recomp!IEd the COde Wlth addltlonal 21:34:37 #4 Ax56218ade2e?? in mgtt3_packet_handle (/homespoc/mosquitto,
Comp||at|on flags to enable Google’s ASAN 21:34:37 #5 0x56218ade2bsl in _mosquitto_packet_read (/home/poc/mosquil
. . 21:34.37 #6 Bx56218adcasby in loop_handle reads _writes (/home/pec/mosql
|nStrumentat|0n 21:34:37 #7 0Ox56218adcd91ic in mosquitto main loop (Shomespoc/mosquitto.
21:34:37 #8 0x56218adalasc in main (S homespec/mosquittossro/mosquittotH
21:34:37 #9 Ax7feafd3nsosa in _ libc_start _main (Susr/lib/s1libc.so. 6+0x:
. . 21:34:37
o ThlS Vulnerablllty WOUId not have been 21:34:37 SUMMARY: Addresssanitizer: 1 byte(s) leaked in 1 allocation(s).
13437

detected by only observing the fuzzed protocol
© 2019 Synopsys, Inc. 28 S‘/"UPS‘/SG

Key Takeaways

Shift Left: Conduct Fuzz Testing earlier in the software

development lifecycle

 Allows for gray/white box approach
 Finding issues earlier
 Fixing Issues earlier!

Use Agent Instrumentation for efficient and effective Fuzz

Testing

« Advanced instrumentation to detect exceptions and unintended behavior
not observable over the fuzzed protocol

 Collect additional information from the SUT to help developers identify the
root cause

* Allows for automating fuzz testing
© 2019 Synopsys, Inc. 29 S‘/"UPS‘/SG

Dennis Kengo Oka
dennis.kengo.oka@synopsys.com

Challenges of fuzzing automotive components

Agent Instrumentation Framework - using
agents on the SUT to improve fuzz testing

Results show It Is possible to detect previously
undetectable exceptions

© 2019 Synopsys, Inc. 30 SV"UPS‘/SG

