
© 2019 Synopsys, Inc. 1

Efficient and Effective Fuzz Testing of 

Automotive Linux Systems using Agent 

Instrumentation
Dennis Kengo Oka and Rikke Kuipers

dennis.kengo.oka@synopsys.com

rikke.kuipers@synopsys.com
Automotive Linux Summit, Tokyo, Japan

2019/7/19



© 2019 Synopsys, Inc. 2

Dennis Kengo Oka - Automotive Security

• Started Automotive Security in 2006

– Securing over-the-air updates and remote diagnostics

• Senior Solution Architect based in Tokyo but involved in automotive 

security globally

• Long experience working with and supporting several OEMs and 

suppliers on improving their security processes and practices

• Member of Jaspar (Japan Automotive Software Platform and 

Architecture) security working group

– Participating in standardization/best practices work for automotive industry in 

Japan

– Contributed to writing “Bluetooth Fuzzing Guideline” shared with 

OEMs/suppliers in Japan

• 60+ publications and presentations at e.g. escar, JSAE, SAE World 

Congress, Code Blue, IEEE Cybersecurity etc.



© 2019 Synopsys, Inc. 3

Challenges of fuzzing automotive components

Agent Instrumentation Framework - using 
agents on the SUT to improve fuzz testing

Results show it is possible to detect previously 
undetectable exceptions



© 2019 Synopsys, Inc. 4

Challenges of fuzzing automotive components

Agent Instrumentation Framework - using 
agents on the SUT to improve fuzz testing

Results show it is possible to detect previously 
undetectable exceptions



© 2019 Synopsys, Inc. 5

Download Link:
www.synopsys.com/auto-security

Cybersecurity Research Center

• Securing the Modern Vehicle: 

A Study of Automotive 

Industry Cybersecurity 

Practices

• 2019 Open Source Security 

and Risk Analysis (OSSRA) 

Report

http://www.synopsys.com/auto-security


© 2019 Synopsys, Inc. 6

What are the primary factors that lead to vulnerabilities in 

automotive software/technology/components? 

Coding

Open-source 

software

Testing



© 2019 Synopsys, Inc. 7

What are the primary factors that lead to vulnerabilities in 

automotive software/technology/components? 

Coding

Fuzz Testing 

– Defensics

Static Analysis 

– Coverity

Software Composition Analysis 

– Black Duck

Testing

Open-source 

software



© 2019 Synopsys, Inc. 8

What are the primary factors that lead to vulnerabilities in 

automotive software/technology/components? 

Coding

Open-source 

software
Fuzz Testing 

– Defensics

Testing



© 2019 Synopsys, Inc. 9

Fuzz Testing

• Testing technique where malformed

or “out-of-specification” inputs are 

provided to the SUT (system under 

test) which is then observed to detect 

exceptions or unintended behavior

• Allows developers and testers to 

identify unknown vulnerabilities in 

their systems and components



© 2019 Synopsys, Inc. 10

Critical Vulnerabilities Detected by Fuzz Testing

• ASN.1/SNMP various vulnerabilities (2001/2002)

• Apache IPv6-URI vulnerability (2004)

• Image file format various vulnerabilities (2005)

• XML library various vulnerabilities (2009)

• Linux Kernel IPv4 and SCTP several vulnerabilities (2010)

• RSA signature verification vulnerability in strongSwan (2012)

• Heartbleed：OpenSSL vulnerability (2014)

• OpenSSL and GnuTLS several vulnerabilities (2004, 2008, 2012, 2014)

• Badlock：Samba/DCE-RPC denial-of-service vulnerability (2015)



© 2019 Synopsys, Inc. 11

Real World Example – Two Embedded Systems

Low level ECU

Powertrain, chassis, body

Small embedded code base

Model-based development

Safety criticality: High/Low

Security exposure: Low

IVI (In-vehicle infotainment), ADAS, 

Telematics ECU

Open source platforms/libraries

Entire operating systems (AGL)

Safety criticality: Low/Medium/High

Security exposure: High

Linux

Android

…



© 2019 Synopsys, Inc. 12

Challenges for Automotive Components

• Difficult to instrument the SUT in a proper way to determine whether there was 

an exception or if it has failed or crashed

• E.g., fuzz testing Wi-Fi or Bluetooth, instrumentation typically occurs over the 

same protocol that is being fuzzed – this limited instrumentation could lead to 

several potential issues going undetected

• Difficult to gather information from the SUT to be able to easier determine the 

underlying root causes for the exception or failure



© 2019 Synopsys, Inc. 13

Undetected Exceptions on SUT

Fuzzer

SUTFuzz Testing PC

Zombie 

processes

Protocol being fuzzed

Memory 

Leaks

Core dumps
Application

…

Exceptions on SUT not 

detected by just observing 

the fuzzed protocol



© 2019 Synopsys, Inc. 14

Challenges of fuzzing automotive components

Agent Instrumentation Framework - using 
agents on the SUT to improve fuzz testing

Results show it is possible to detect previously 
undetectable exceptions



© 2019 Synopsys, Inc. 15

Agent Instrumentation Framework - Concept

• Developers/testers have access to internals of the SUT (e.g., Linux and Android) 

• Achieve more efficient and accurate fuzz testing by employing a gray/white box 

approach where Agents placed on the SUT assist with the instrumentation

• The Agents provide the fuzzer with detailed instrumentation data from the SUT 

• This data is used to determine the fail / pass verdict of a test case and also 

provides the developers/testers with valuable information from the SUT



© 2019 Synopsys, Inc. 16

Agent Instrumentation Framework - Modes

• More control over the Agents

• Agents can perform various functions 

before and after a test case executes

• Allows for automation and using more 

advanced techniques for finding 

unknown vulnerabilities

• Slower to execute the test run

• Agents are polled periodically

• Fuzzer parses incoming syslog

messages with instrumentation data

• Cannot tie an exception to a specific 

test case but only reports when a 

prespecified condition has been met

• Advantage is speed of execution with 

the loss of accuracy

Synchronous mode Asynchronous mode



© 2019 Synopsys, Inc. 17

Overview of Agent Instrumentation Framework

Fuzzer Agent Instrumentation

SUTFuzz Testing PC

Client
External 

Instrumentation

Syslog

config.json

Server

Syslog

AgentHandler

config.json

Starter

Logger

Agent

CLI HTTP

JSON

UDP/

Syslog



© 2019 Synopsys, Inc. 18

Examples of Agents (1)

• AgentCoreDump

–Looks for a core dump file, if detected will give a fail verdict

–This file can be used to further analyze the state of the process during the crash

• AgentLogTailer

–Monitors a log file

– If a new line is written to the file and matches any of the predefined parameters, it will give a 

fail verdict

• AgentProcessMonitor

–Monitors the state of a process

–Gives a fail verdict if the process is down or turned into a zombie process

–Can also monitor the process’ memory usage and give a fail verdict if the usage goes over a 

configured limit 



© 2019 Synopsys, Inc. 19

Examples of Agents (2)

• AgentPID

–Monitor processes on the SUT with more options

–Can only be run in synchronous mode, otherwise it might generate false positives

–Before each test case is executed, a mapping is made of each predefined process with its 

process identifier (PID) and PIDs of its children

–After a test case is executed the same mapping is performed again 

– If a process has died its PID will not be present in the new mapping

– If a process has died but restarted then it has new PID

–A fail verdict is issued in both cases



© 2019 Synopsys, Inc. 20

Examples of Agents (3)

• AgentAddressSanitizer

–Finds memory addressability issues and memory leaks using Google’s ASAN framework:

– e.g., Use after free (dangling pointer dereference), Heap buffer overflow, Stack buffer overflow, 

Global buffer overflow, Use after return, Use after scope, Initialization order bugs, Memory leaks

–Target software needs to be compiled with additional compiler flags, can only be run in 

synchronous mode

–Two configurations: memory leaks and all other addressability issues

–To find memory leaks: target process is killed after each testcase and ASAN’s output is 

analyzed

–To find all other addressability issues: the Agent configures ASAN to kill the process upon 

finding any issue – this configuration is faster than finding memory leaks

– In both cases, crash trace and if available detailed crash information are reported back to 

the fuzzer



© 2019 Synopsys, Inc. 21

Examples of Agents (4)

• AgentValgrind

–Finds memory leaks and addressability issues (similar to AgentAddressSanitizer)

–Difference is the mode of operation and speed

–Uses various checkers and profilers from the Valgrind project, which effectively emulates a 

hardware layer for the program to run on

–Quite heavy and adds overhead to each test case

–Advantage is that there is no need to recompile target software



© 2019 Synopsys, Inc. 22

Example Configuration Script

Starter script on SUT loads 

AgentPID which monitors 

the specified processes



© 2019 Synopsys, Inc. 23

Challenges of fuzzing automotive components

Agent Instrumentation Framework - using 
agents on the SUT to improve fuzz testing

Results show it is possible to detect previously 
undetectable exceptions



© 2019 Synopsys, Inc. 24

Setup of Test Bench 

Defensics Agent Instrumentation

SUTFuzz Testing PC

Client
External 

Instrumentation

config.json

Server

AgentHandlerStarter

Logger

Agent

CLI HTTP

JSON



© 2019 Synopsys, Inc. 25

Test Setup

• Run in synchronous mode

• Agents used most:

–AgentPID as it requires no extra 

configuration or modification of the 

system under test 

–AgentAddressSanitizer and 

AgentValgrind to find memory issues

• Automatically run scripts to enable 

the agents and collect results

• Target systems: Linux or Android

• Protocols:

–Browser protocols

–Bluetooth protocols

–Wireless (802.11) protocols

–Messaging protocols

–File format parsing (audio, images, 

video)

–CAN-bus



© 2019 Synopsys, Inc. 26

Bluetooth Results

• Found a critical vulnerability where a fuzzed 

single frame causes the main Bluetooth 

kernel module to crash

• Detected by monitoring the bluetoothd

daemon process using the AgentPID agent

• Since the device has a daemon watchdog 

which quickly restarts bluetoothd, this 

vulnerability would not have been detected 

by just observing the Bluetooth protocol

15:25:43.238 python client.py --config pid-
monitor.json instrumentation

15:25:43.640 Instrumentation verdict: FAIL

15:25:43.640 FAIL Agent: pid_monitor Info: Agent
pid_monitor says

15:25:43.640 ofonod : ['353']

15:25:43.640 bluetoothd : ['896'] -> [].

15:25:43.640 bluetoothgateway : [547]

15:25:43.640 mediaserver : [154]

15:25:43.640 wez-launch : ['114']

15:25:43.640 wez : ['114', '130']

15:25:43.640 ogg_streamhandler : [11]

15:25:43.640 pulseaudio : ['775']

15:25:43.640 audio_daemon : ['839']

15:25:43.640 media_engine_app : [145]

AgentPID agent



© 2019 Synopsys, Inc. 27

Wi-Fi Results

• Found a critical vulnerability where a fuzzed single 

frame caused several kernel modules to crash

• Non-authenticated frame – could be sent by anyone

• Log Tailer agent found this issue by tailing syslog 

with the keywords “stack”, “crash” and several kernel 

module names 

• This vulnerability would not have been detected by 

only observing the Wi-Fi communication as the 

kernel watchdog restarted the affected modules 

immediately

Log Tailer agent



© 2019 Synopsys, Inc. 28

MQTT Results

• Found a memory leak in the popular MQTT 

broker Mosquitto

• Access to the source code of the MQTT broker

• AgentAddressSanitizer to test for memory 

addressability issues and memory leaks

• Recompiled the code with additional 

compilation flags to enable Google’s ASAN 

instrumentation

• This vulnerability would not have been 

detected by only observing the fuzzed protocol

AgentAddressSanitizer



© 2019 Synopsys, Inc. 29

Key Takeaways

Shift Left: Conduct Fuzz Testing earlier in the software 
development lifecycle

• Allows for gray/white box approach

• Finding issues earlier

• Fixing issues earlier!

Use Agent Instrumentation for efficient and effective Fuzz 
Testing 

• Advanced instrumentation to detect exceptions and unintended behavior 
not observable over the fuzzed protocol

• Collect additional information from the SUT to help developers identify the 
root cause

• Allows for automating fuzz testing



© 2019 Synopsys, Inc. 30

Challenges of fuzzing automotive components

Agent Instrumentation Framework - using 
agents on the SUT to improve fuzz testing

Results show it is possible to detect previously 
undetectable exceptions

Dennis Kengo Oka

dennis.kengo.oka@synopsys.com


