
A DevOps State of Mind:
Continuous Security with Kubernetes

Chris Van Tuin
Red Hat
Chief Technologist, NA West / Silicon Valley
cvantuin@redhat.com

“Only the paranoid survive”
 - Andy Grove, 1996

THE WORLD IS AUTOMATING
Those who succeed in automation will win

THE CHALLENGE:  
ENABLE INNOVATION AT SPEED, WHILE

EXECUTING AT SCALE WITH EFFICIENCY

Static & 
Planned

Dynamic &  
Policy Driven

ExecutionInnovation
Old New

ExecutionInnovation

https://goo.gl/MP7QQH

IT’S NOT JUST SOFTWARE,
THE DIGITAL LEADERS =

Empowered
organization

Speed Up  
Innovation

Time

C
ha

ng
e

Move Fast,
Break Things

Culture of
experimentation

A

20% vs. 25%

Shorten the
Feedback Loop

Real-time
data-driven

intelligence &
personalization

AI / 
 ML

Data,
Data,
Data

B

https://goo.gl/MP7QQH

IT MUST EVOLVE & KEEP UP

Applications &
devices outside of

IT control

Cloud
computing

Software-defined
infrastructure

Dissolving
security

perimeter

Menacing threat
landscape

TRADITIONAL NETWORK-BASED DEFENSES ARE NO LONGER ENOUGH

SECURING THE ENTERPRISE IS HARDER THAN EVER

The way we develop, deploy and manage IT is changing dramatically
led by DevOps, Cloud Native Applications, and Hybrid Cloud

DEVSECOPS

Continuous
Security

Improvement
Process

Optimization
Security

Automation

Dev QA Prod

Reduce Risks, Lower Costs, Speed Delivery, Speed Reaction

DEVSECOPS

+ +

Security

DEV QA OPS

Culture Process Technology

Linux + Containers
IaaS

Orchestration
CI/CD

Source Control Management
Collaboration

Build and Artifact Management
Testing

Frameworks

Cloud Native Applications

Hybrid Cloud

O
pe

n
So

ur
ce

Chris Van Tuin
Chief Technologist, NA West / Silicon Valley
cvantuin@redhat.co

 docker.io
RegistryPrivate

Registry

FROM fedora:1.0
CMD echo “Hello”

Build file

Physical, Virtual, Cloud

Container
Image

Container
Instance

Build RunShip

CONTAINERS ENABLE DEVSECOPS

Chris Van Tuin
Chief Technologist, NA West / Silicon Valley
cvantuin@redhat.co

Scheduling Monitoring

Persistence

DiscoveryLifecycle & health

Scaling Aggregation Security

CONTAINERS AT SCALE

BARE METAL VIRTUAL PRIVATE CLOUD PUBLIC CLOUD

BARE METAL VIRTUAL PRIVATE CLOUD PUBLIC CLOUD

Security Platform

AUTOMATION

Web Database

role=web role=db role=web

replicas=1,  
role=db

replicas=2,  
role=web

ORCHESTRATION
Deployment, Declarative

Pods

Nodes

Services

Controller
Manager

&
Data Store

(etcd)

Web Database
replicas=1,  
role=db

replicas=2,  
role=web

HEALTH CHECK

Pods

Nodes

Services

role=web role=db role=web

Controller
Manager

&
Data Store

(etcd)

Pods

Nodes

Services Web Database
replicas=1,  
role=db replicas=3  

role=web

AUTO-SCALE

50% CPU

role=web role=db role=web role=web

Controller
Manager

&
Data Store

(etcd)

Network
isolation

API & Platform
access

Federated
clusters

Storage

{}

CI/CD

Monitoring &
Logging

BuildsImages

SECURING YOUR CONTAINER ENVIRONMENT

Container
hostRegistry

CONTAINER IMAGES

LAPTOP

Container

Application

OS dependencies

Guest VM

LINUX

BARE METAL

Container

Application

OS dependencies

LINUX

VIRTUALIZATION

Container

Application

OS dependencies

Virtual Machine

LINUX

PRIVATE CLOUD

Container

Application

OS dependencies

Virtual Machine

LINUX

PUBLIC CLOUD

Container

Application

OS dependencies

Virtual Machine

LINUX

CONTAINERS - Build Once, Deploy Anywhere
Reducing Risk and Improving Security with Improved Consistency

CONTAINER IMAGE

JAR CONTAINER IMAGE

Application Application

Language runtimes

OS dependencies

1.2/latest

1.1

Config Data

Kubernetes
configmaps

secrets
Container

image

Traditional  
data services,

Kubernetes  
persistent volumes

TREAT CONTAINERS AS IMMUTABLE

Application

Language runtimes

OS dependencies

•Authenticating authorship
•Non-repudiation
•Ensuring image integrity

CONTAINER IMAGE SIGNING
Validate what images and version are running

CONTAINER BUILDS

A CONVERGED SOFTWARE  
SUPPLY CHAIN

CUSTOM SUPPLY CHAIN

• Treat build file as a Blueprint
• Version control build file
• Don’t login to build/configure
• Be explicit with versions, not latest
• Always list registry pulling FROM
• Specify USER, default is root
• Each Run creates a new layer

BUILD FILE BEST PRACTICES

FROM registry.redhat.com/rhel7
RUN groupadd -g 999 appuser && \
 useradd -r -u 999 -g appuser appuser
USER appuser
CMD echo “Hello”

Build file

CONTAINER REGISTRY SECURITY

64% of official images in Docker Hub  
contain high priority security vulnerabilities

examples:

ShellShock (bash)
Heartbleed (OpenSSL)

Poodle (OpenSSL)

Source: Over 30% of Official Images in Docker Hub Contain High Priority Security Vulnerabilities, Jayanth Gummaraju, Tarun Desikan, and Yoshio Turner, BanyanOps,
May 2015 (http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf)

WHAT’S INSIDE THE CONTAINER MATTERS

http://www.banyanops.com/pdf/BanyanOps-AnalyzingDockerHub-WhitePaper.pdf

PRIVATE REGISTRY

CONTAINER HOST SECURITY

Kernel
Hardware (Intel, AMD) or Virtual Machine

Containers ContainersContainers

Unit File

Docker
Image

Container CLI

SYSTEMD

Cgroups Namespaces SELinux

Drivers

CONTAINERS ARE LINUX

seccomp Read Only mounts

CGROUPS - RESOURCE ISOLATION

NAMESPACES - PROCESS ISOLATION

SELINUX - MANDATORY ACCESS CONTROLS

Password
Files

Web
Server Attacker

Discretionary Access Controls  
(file permissions)

Mandatory Access Controls  
(selinux)

Internal
Network

Firewall
Rules

Password
Files

Firewall
RulesInternal

Network

Web
Server

selinux
policy

SECCOMP AND LINUX CAPABILITIES 
FILTERING SYSTEM CALLS and DROPPING PRIVILEGES

READ ONLY MOUNTS

Chris Van Tuin
Chief Technologist, NA West / Silicon Valley
cvantuin@redhat.co

Best Practices
• Don’t run as root
• If you must,  

limit Linux Capabilities
• Limit SSH Access
• Use namespaces
• Define resource quotas
• Enable logging
• Apply Security Errata
• Apply Security Context
 and seccomp filters
• Run production  

unprivileged containers  
as read-only

http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-deployment.html

Kernel
Hardware (Intel, AMD) or Virtual Machine

Containers ContainersContainers

Unit File

Docker
Image

Container CLI

SYSTEMD

Cgroups Namespaces SELinux

Drivers seccomp Read Only mountsCapabilities

CONTAINER HOST SECURITY

CONTINUOUS INTEGRATION
WITH CONTAINERS

CONTINUOUS INTEGRATION + BUILDS

WHAT’S INSIDE MATTERS…

Security

CONTINUOUS INTEGRATION WITH
SECURITY SCAN

AUTOMATED SECURITY SCANNING with OpenSCAP

ReportsScan

SCAP Security
Guide

for RHEL

CCE-27002-5
Set Password Minimum
Length

Content

 Scan physical servers, virtual machines, docker images and containers 
for Security Policy Compliance (CCEs) and known Security Vulnerabilities (CVEs)

Standard Docker Host Security Profile
Java Runtime Environment (JRE)
Upstream Firefox STIG
RHEL OSP STIG
Red Hat Corporate Profile for Certified Cloud Providers (RH CCP)
STIG for Red Hat Enterprise Linux 6, 7 Server
STIG for Red Hat Virtualization Hypervisor
Common Profile for General-Purpose Debian Systems
Common Profile for General-Purpose Fedora Systems
Common Profile for General-Purpose Ubuntu Systems

Payment Card Industry – Data Security Standard (PCI-DSS) v3

U.S. Government Commercial Cloud Services (C2S)
CNSSI 1253 Low/Low/Low Control Baseline for Red Hat Enterprise Linux 7
Criminal Justice Information Services (CJIS) Security Policy
Unclassified Information in Non-federal Information Systems and Organizations (NIST 800-171)
U.S. Government Configuration Baseline (NIAP OSPP v4.0, USGCB, STIG)

Security Policies in SCAP Security Guide (partial)

SECURITY POLICY REPORT

SECURITY POLICY REMEDIATION

CONTINUOUS DELIVERY
WITH CONTAINERS

Chris Van Tuin
Chief Technologist, NA West / Silicon Valley
cvantuin@redhat.co

CONTINUOUS DELIVERY WITH CONTAINERS

CONTINUOUS DELIVERY DEPLOYMENT STRATEGIES

DEPLOYMENT STRATEGIES

• Recreate

• Rolling updates

• Blue / Green deployment

• Canary with A/B testing

Recreate

Version 1 Version 1Version 1

Version 1.2

`

Tests / CI

RECREATE WITH DOWNTIME

Version 1 Version 1Version 1

Version 1.2

`

Tests / CI

RECREATE WITH DOWNTIME

Version 1.2 Version 1.2Version 1.2

RECREATE WITH DOWNTIME
Use Case
• Non-mission critical services

Cons
• Downtime

Pros
• Simple, clean
• No Schema incompatibilities
• No API versioning

Rolling Updates

Version 1 Version 1Version 1

Version 1.2

`

Tests / CI

ROLLING UPDATES with ZERO DOWNTIME

Deploy new version and wait until it’s ready…

Version 1 Version 1 V1.2

Health Check:
readiness probe

 e.g. tcp, http, script

V1

Each container/pod is updated one by one

Version 1.2

50%

Version 1 V1 V1.2

Each container/pod is updated one by one

Version 1.2Version 1.2Version 1.2

100%
Use Case
• Horizontally scaled
• Backward compatible

API/data
• Microservices

Cons
• Require backward

compatible APIs/data
• Resource overhead

Pros
• Zero downtime
• Reduced risk, gradual

rollout w/health checks
• Ready for rollback

Blue / Green Deployment

Version 1

BLUE / GREEN DEPLOYMENT

Route

BLUE

Version 1

BLUE / GREEN DEPLOYMENT

Version 1.2

BLUE GREEN

Version 1 Tests / CI

BLUE / GREEN DEPLOYMENT

Version 1.2

BLUE GREEN

Version 1 Version 1.2

BLUE / GREEN DEPLOYMENT

Route

Version 1.2

BLUE GREEN

Version 1

BLUE / GREEN DEPLOYMENT

Rollback

Route

Version 1.2

BLUE GREEN

Use Case
• Self-contained micro

services (data)

Cons
• Resource overhead
• Data synchronization

Pros
• Low risk, never

change production
• No downtime
• Production like testing
• Rollback

RAPID INNOVATION &
EXPERIMENTATION

”only about 1/3 of ideas improve the metrics  
they were designed to improve.” 

Ronny Kohavi, Microsoft (Amazon)

MICROSERVICES
RAPID INNNOVATION & EXPERIMENTATION

CONTINUOUS FEEDBACK LOOP

A/B TESTING USING CANARY DEPLOYMENTS

Version BVersion A

100%
Tests / CIRoute

25% Conversion Rate ?! Conversion Rate

CANARY DEPLOYMENTS

50% 50%

Version BVersion A

Route

25% Conversion Rate 30% Conversion Rate

CANARY DEPLOYMENTS

25% Conversion Rate

100%

Version A Version B

Route

30% Conversion Rate

CANARY DEPLOYMENTS

100%
Route

Rollback

25% Conversion Rate 20% Conversion Rate

CANARY DEPLOYMENTS

Version BVersion A

Network
isolation

API & Platform
access

Federated
clusters

Storage

{}

CI/CD

Monitoring &
Logging

ImagesBuilds
Container

hostRegistry

SECURING YOUR CONTAINER ENVIRONMENT

NETWORK SECURITY

Network Namespace  
provides resource isolation

NETWORK ISOLATION

Multi-Environment Multi-Tenant

NETWORK POLICY
example:  

all pods in namespace ‘project-a’ allow traffic  
from any other pods in the same namespace.”

Kubernetes  
Logical Network Model

NETWORK SECURITY

• Kubernetes uses a flat SDN model
• All pods get IP from same CIDR
• And live on same logical network
• Assumes all nodes communicate 

Traditional  
Physical Network Model

• Each layer represents a Zone with 
increased trust - DMZ > App > DB, 
interzone flow generally one direction

• Intrazone traffic generally unrestricted

NETWORK SECURITY MODELS
Co-Existence Approaches

One Cluster
Multiple Zones

Kubernete Cluster

Physical Compute  
isolation based on  

Network Zones
Kubernete Cluster

One Cluster
Per Zone

Kubernete Cluster B

Kubernete Cluster A

Kubernetes Cluster B

C

D

https://blog.openshift.com/openshift-and-network-security-zones-coexistence-approaches/

MONITORING & LOGGING

KUBERNETES MONITORING CONSIDERATIONS

Kubernetes*

Container*

Host

Cluster services, services, pods,  
deployments metrics

Container native metrics

Traditional resource metrics
- cpu, memory, network, storage

prometheus + grafana
kubernetes-state-metrics
probes

Stack Metrics Tool

node-exporter

kubelet:cAdvisor

Application
Distributed applications
- traditional app metrics
- service discovery
- distributed tracing

prometheus + grafana
jaeger tracing
istio

Aggregate platform and application log access via Kibana + Elasticsearch

LOGGING

STORAGE SECURITY

Local Storage Quota Security Context Constraints

STORAGE SECURITY

Sometimes we can also have
storage isolation requirements:  
pods in a network zone must use
different storage endpoints  
than pods in other network
zones.

We can create one storage class
per storage endpoint and  
then control which storage
class(es) a project can use

API & PLATFORM ACCESS

Authentication
 via

OAuth tokens and
SSL certificate

Authorization
 via

Policy Engine
checks

User/Group
Defined Roles

API & PLATFORM ACCESS

FEDERATION

Amazon East OpenStack

FEDERATED CLUSTERS
Roles & access management (in-dev)

WHAT’S NEXT

Traffic
Control

Service
Resiliency

Chaos
Testing

Observ-
ability Security

OPERATORS

Deployment
Frequency

Lead
Time

Deployment 
Failure Rate

Mean Time
to Recover

99.999

Service
Availability

DEVSECOPS METRICS

Compliance
Score

THANK YOU

linkedin: Chris Van Tuin
email: cvantuin@redhat.com
twitter: @chrisvantuin

