
An Open Source Approach to
Paying Off Infrastructure Technical

Debt Blocking the Path to the Cloud
best practices and lessons learned

Presentation to the Linux Foundation Open FinTech Forum

Evan Bauer | OPSTACK

Technical debt is a concept in software development that reflects the
implied cost of additional rework caused by choosing an easy

solution now instead of using a better approach that would take
longer. Technical debt can be compared to monetary debt.

- Wikipedia

Technical Debt is a wonderful metaphor developed by Ward
Cunningham to help us think about this problem. In this metaphor,

doing things the quick and dirty way sets us up with a technical debt,
which is similar to a financial debt.

– Martin Fowler

Operational technical debt is the implied cost of the approaches,
processes, and technologies we own that don’t take into account the
manual effort and lost opportunities — as well as the implied security

and regulatory compliance costs that they generate.

As in software technical debt, the cost of the debt will increase on its
own until paid off.

What happens when the ops team is too busy?

• Unacceptable provisioning time

• Manual, error-prone releases/changes

• Dev teams move to public clouds — but without compliance and
violating segregation of duties

• Systems fail after patching attempts or for lack of hygiene (disk
space, memory, expired certificates…)

• Maintenance is deferred, leaving systems vulnerable and fragile

Security team is distracted by all of the following,
and wants them addressed first

• The number and duration of security policy exceptions are growing

• Not all systems are at current, fully-patched, version levels

• Scans show no decrease in the number of critical unpatched vulnerabilities

• Newly deployed servers and newly released applications fail security scans

• Unable to easily produce audit evidence of system compliance

• No tested and ready mechanism to immediately and effectively eliminate,
mitigate, or control a zero-day critical vulnerability or a breach in progress

…and it is hard to blame them

Reported infections by year. Source: AV-Test Institute

…while business-as-usual increases the debt

• M&A adds diversity and complexity

• Public cloud adds sprawl without lifecycle support

• DevOps speeds deployments — but security and compliance is limited by
the skills of each DevOps team

• Increasingly complex architectures and deployments cause
application owners to resist patches and upgrades

• Increasing numbers of systems and volume of data overwhelm the
capacity in place to maintain and protect them

The interest on technical debt compounds with complexity, volume, and
the continual stream of new vulnerabilities and needed remediations.

No wonder ops can’t find the time to make DevOps and Cloud Native a
reality for the whole institution

Manual processes and divided focus can’t keep up.

The only thing that works is to change the game.

Make all manual processes
obsolete through automation

So what does this look like?

The four tenets of successful operations

Simplify

Standardize

AutomateMonitor

Automate all builds and deployments
• Stop creating any new technical debt

• Create all new non-prod and production instances with an automated process —
cloud, virtual, and physical

• Every server or container starts fully loaded and fully patched with all security,
monitoring, and admin packages installed and tested — and is in the CMDB

• Access controls, group privileges, auditing, firewall configurations are all set as
part of the build

• Make every server image easily replaceable with a clean build at any time

• By making it self-self-service, secure is easier than insecure

Patch Frequently and in Real-Time
• Patch (or rebuild) every system, at least once each month

• Respect the patch window — neither skip it, nor extend it

• Have a scheduled cadence for DEV, QA, UAT, PROD, and DR

• Monitor patching in real-time and fix whatever breaks in the window

• Keep patching atomic, any failures are corrected or rolled back in the
window

• Make patching non-disruptive for applications served by clusters and farms

While SWAT teams tackle legacy applications

• Application teams too often treat servers as pets rather than cattle, this is
especially true for complex applications with long lives

• Inject ops and security team members into dev and support teams to
reverse engineer the code into the secure CI/CD process and create clean
server builds to host them

• Simplify and expedite sign-offs for the applications that fully comply —
reward good behavior

This produces a Win-Win for application owners (compliance with lower
maintenance costs) and security — now it is possible to make the jump to
cloud and cloud native

The solution is known,
but where and how do you start?

• Skilled people are required to assess the technical estate and establish or
verify standards

• New processes are needed to implement those standards — stopping the
accrual of technical debt and paying down the outstanding balance

• When the operations team is tied down doing manual support (and
occasional build) tasks, they don’t have time to implement an automation
platform

• With all the pieces available (and no one “be and end all” product) there is a
learning curve and a long lead-time to automated platforms and processes

What processes and technologies need to be in
scope?

• System baselines

• Security policies

• Lifecycle policy

• Configuration management

• Deployment standards

• Deployment process

• Change control policy

• Maintenance schedule

• Scripting and orchestration

• Monitoring and Reporting

• Testing

• Repositories for source,
apps, and external
packages

• An operations control plane

• Interface to an ITSM

Why an Operations Stack?

There is no one product “silver bullet” — if there was you’d
already have it.

It’s almost never a green field, the new stack should
supplement and extend existing or legacy components.

These should then be tied together by an automation
architecture and data models.

Open and Best-of-Breed
Scripting and Orchestration Python | Salt | Ansible

Monitoring, Reporting, and Testing ELK | Nageos | Selenium

Source, App, and Package Repos Git | Artifactory | Uyuni

Operations Control Plane Django | PostgreSQL

…and for Windows add PowerShell | WSUS

People, Process, and Technology
An ITIL principle is that success isn’t possible without all three. Too often we
start by spending time and money finding and purchasing products — but a
skilled team and a set of standard processes to automate has to come first.

• Injection of a skilled and experienced automation team that delivers the
processes and platform along with full technology transfer to the
operations team

• A clean set of ITIL-derived processes tailored to your needs

• A solid set of proven, open, integrated tools

Thoughts and Questions?

Evan Bauer

evan@opstack.us

Copyright 2018, OpStack Inc.

mailto:evan@opstack.us

