Discovering Tiny Snakes

loT development without the need to compile
(mostly)

Quick: MicroPython vs.
CircuitPython?

in ..
MicroPython p

Why Is this different?

Hode3Zs. BOMMz. 921600 on fdevAtyUSE0

Why Is this different?

Quick, iterative, development

Most of the advantages of Python
O to blinking LED very quick

Mostly no need to compile anything

Lots of default functionality, and upip (library /
package management!)

Why Is this possible?

« Same reason IoT is becoming ubiquitous
- Low power MCUs and CPUs are getting more powerful, and cheaper at the same time.

« ESP32 on the SensorNode cost $5.10 to place on the board.
— Dual Core
- Wifi (802.11b/g/n up to 150Mbps 2.4GHz)
- Bluetooth (v4.2 BR/EDR & BLE)
- 4MB of flash
- 520KB RAM

* There’s lots of competition in this space

How to get started

* Serial Drivers
- Linux: Assuming your distro isn'’t terrible, you are done

- Windows / Mac: Install the Silicon Mechanics CP2104 (
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridg
e-vcp-drivers

)
 Download / Install esptool
— This requires Python
- Linux: distro packages are available
- Windows / Mac: use pypi to install

 Download MicroPython and Upload it to the board

- esptool.py --chip esp32 --port /dev/ttyUSBO erase_flash && \
esntool nv --chin esnb3? --nort /dev/ttvlUISBO write flash -7z Ox1000 <path to micronvthon bin>

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Breaking down the flash commands

esptool.py

--chip esp32 # Identifies which chip varient we are dealing with

--port /dev/ttyUSBO # Identifies which port the serial device is on

erase_flash # Erases the flash area of the chip (not including the boot loader area)
&&
esptool.py

--chip esp32 # Identifies which chip varient we are dealing with

--port /dev/ttyUSBO # ldentifies which port the serial device is on

write_flash # Indicates to write to the flash chip

-z 0x1000 # Indicates WHERE on the flash chip to write to

<path to micropython .bin> # What to flash to the chip

Open up the serial console
* Minicom: minicom -D /dev/ttyUSBO --baudrate
115200 (to exit <ctrl>c-q)

* Screen: screen /dev/ttyUSB0O 115200n8 (to exit
<ctrl>c-A\)

e Windows: use PuTTY

d
-
®
@)

O
D

L
G
G
D
)
D

ad

On the serial console...

(SPI_FAST_FLASH_

), b

then
ENOENT

Now to blink an LED!

* Type the following:
from machine import Pin, Signal
Import machine
pin_led board =0
_led_board = Pin(pin_led_board, Pin.OUT)
led_board = Signal(_led board, invert=True)
led board.off()
led _board.on()

Some Interesting things to note

boot.py

— executed on every start, good for setting up the board (good place for wifi settings for
example)

main.py
- Run after boot.py, think of it like the autoexec.bat

It's possible to upload more files to the board
- Ampy - https://github.com/adafruit/ampy

Tab completion works in the repl prompt

<ctrl>+e at the repl prompt puts you into “paste” mode, so you can paste a longer
set of code into the buffer to execute

https://github.com/adafruit/ampy

Lets get more advanced....

 Read from the BME280
- Upload bme280.py to the board
- Setup 12C in python
- Attach bme280 to the 12C bus
- Read some data

from machine import Pin, 12C
import machine
import bme280

pin_i2c_scl =22
pin_i2c_sda =21

bme280_ address = 0x77

print("Setting up Sensor 12C")

The Code:

sensor_i2c = 12C(scl=Pin(pin_i2c_scl), sda=Pin(pin_i2c_sda))

print("Setting up BME280")

bme = bme280.BME280(i2c=sensor_i2c, address=bme280_address)

bme.values

Adding the TSL2591 to the BME280

* Import the TSL2591 driver
e Attach the driver to the same 12C

from machine import Pin, 12C

import machine
import bme280
import tsl2591

pin_i2c_scl =22
pin_i2c_sda =21

bme280_ address = 0x77

print("Setting up Sensor 12C")

The Code

sensor_i2¢c = 12C(scl=Pin(pin_i2c_scl), sda=Pin(pin_i2c_sda))

print("Setting up BME280")

bme = bme280.BME280(i2c=sensor_i2c, address=bme280_address)

bme.values

tsl = ts12591.Tsl2591()
tsl.get_full_luminosity()

Where to go from here

* Setup Wifi in client mode

- Then run:
import socket
addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)
s = socket.socket()
s.connect(addr)
while True:
data = s.recv(500)
print(str(data, 'utf8"), end=")

the several enters above matter for the loop levels
Setup Wifi in AP mode (note: it can do both simultaneously, albeit slowly)

Install UMQTT and export sensors over MQTT

Explore the “test” scripts included

Put files on the sdcard

Enjoy the board

LInks to more resources

https://github.com/unreproducible/tinysnakes

https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html
(note: most of the ideas are the same, the boards ARE different)

https://boneskull.com/micropython-on-esp32-part-1/

https://www.cnx-software.com/2017/10/16/esp32-micropython-tutorials/

Any questions before you start this on your own?

John ‘Warthog9’ Hawley | warthog9@eaglescrag.net | @warty9

https://github.com/unreproducible/tinysnakes
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html
https://boneskull.com/micropython-on-esp32-part-1/
https://www.cnx-software.com/2017/10/16/esp32-micropython-tutorials/
mailto:warthog9@eaglescrag.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

