

Discovering Tiny Snakes

IoT development without the need to compile
(mostly)

Quick: MicroPython vs.
CircuitPython?

Why is this different?

Why is this different?
● Quick, iterative, development
● Most of the advantages of Python
● 0 to blinking LED very quick
● Mostly no need to compile anything
● Lots of default functionality, and upip (library /

package management!)

Why is this possible?
● Same reason IoT is becoming ubiquitous

– Low power MCUs and CPUs are getting more powerful, and cheaper at the same time.

● ESP32 on the SensorNode cost $5.10 to place on the board.
– Dual Core
– Wifi (802.11b/g/n up to 150Mbps 2.4GHz)
– Bluetooth (v4.2 BR/EDR & BLE)
– 4MB of flash
– 520KB RAM

● There’s lots of competition in this space

How to get started
● Serial Drivers

– Linux: Assuming your distro isn’t terrible, you are done

– Windows / Mac: Install the Silicon Mechanics CP2104 (
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridg
e-vcp-drivers
)

● Download / Install esptool

– This requires Python

– Linux: distro packages are available

– Windows / Mac: use pypi to install

● Download MicroPython and Upload it to the board
– esptool.py --chip esp32 --port /dev/ttyUSB0 erase_flash && \

esptool.py --chip esp32 --port /dev/ttyUSB0 write_flash -z 0x1000 <path to micropython .bin>

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Breaking down the flash commands
esptool.py

 --chip esp32 # Identifies which chip varient we are dealing with

 --port /dev/ttyUSB0 # Identifies which port the serial device is on

 erase_flash # Erases the flash area of the chip (not including the boot loader area)

&&
esptool.py

 --chip esp32 # Identifies which chip varient we are dealing with

 --port /dev/ttyUSB0 # Identifies which port the serial device is on

 write_flash # Indicates to write to the flash chip

 -z 0x1000 # Indicates WHERE on the flash chip to write to

 <path to micropython .bin> # What to flash to the chip

Open up the serial console
● Minicom: minicom -D /dev/ttyUSB0 --baudrate

115200 (to exit <ctrl>c-q)
● Screen: screen /dev/ttyUSB0 115200n8 (to exit

<ctrl>c-A \)
● Windows: use PuTTY

Reset the board

On the serial console...

Now to blink an LED!
● Type the following:

 from machine import Pin, Signal

 import machine

 pin_led_board = 0

 _led_board = Pin(pin_led_board, Pin.OUT)

 led_board = Signal(_led_board, invert=True)

 led_board.off()

 led_board.on()

Some interesting things to note
● boot.py

– executed on every start, good for setting up the board (good place for wifi settings for
example)

● main.py
– Run after boot.py, think of it like the autoexec.bat

● It’s possible to upload more files to the board
– Ampy - https://github.com/adafruit/ampy

● Tab completion works in the repl prompt
● <ctrl>+e at the repl prompt puts you into “paste” mode, so you can paste a longer

set of code into the buffer to execute

https://github.com/adafruit/ampy

Lets get more advanced….
● Read from the BME280

– Upload bme280.py to the board
– Setup I2C in python
– Attach bme280 to the I2C bus
– Read some data

The Code:
from machine import Pin, I2C

import machine

import bme280

pin_i2c_scl = 22

pin_i2c_sda = 21

bme280_address = 0x77

print("Setting up Sensor I2C")

sensor_i2c = I2C(scl=Pin(pin_i2c_scl), sda=Pin(pin_i2c_sda))

print("Setting up BME280")

bme = bme280.BME280(i2c=sensor_i2c, address=bme280_address)

bme.values

Adding the TSL2591 to the BME280
● Import the TSL2591 driver
● Attach the driver to the same I2C

The Code
from machine import Pin, I2C

import machine

import bme280

import tsl2591

pin_i2c_scl = 22

pin_i2c_sda = 21

bme280_address = 0x77

print("Setting up Sensor I2C")

sensor_i2c = I2C(scl=Pin(pin_i2c_scl), sda=Pin(pin_i2c_sda))

print("Setting up BME280")

bme = bme280.BME280(i2c=sensor_i2c, address=bme280_address)

bme.values

tsl = tsl2591.Tsl2591()

tsl.get_full_luminosity()

Where to go from here
● Setup Wifi in client mode

– Then run:
 import socket
 addr_info = socket.getaddrinfo("towel.blinkenlights.nl", 23)
 s = socket.socket()
 s.connect(addr)
 while True:
 data = s.recv(500)
 print(str(data, 'utf8'), end='')

the several enters above matter for the loop levels

● Setup Wifi in AP mode (note: it can do both simultaneously, albeit slowly)
● Install uMQTT and export sensors over MQTT
● Explore the “test” scripts included
● Put files on the sdcard
● Enjoy the board

Links to more resources
● https://github.com/unreproducible/tinysnakes

● https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html
(note: most of the ideas are the same, the boards ARE different)

● https://boneskull.com/micropython-on-esp32-part-1/

● https://www.cnx-software.com/2017/10/16/esp32-micropython-tutorials/

Any questions before you start this on your own?

John ‘Warthog9’ Hawley | warthog9@eaglescrag.net | @warty9

https://github.com/unreproducible/tinysnakes
https://docs.micropython.org/en/latest/esp8266/tutorial/intro.html
https://boneskull.com/micropython-on-esp32-part-1/
https://www.cnx-software.com/2017/10/16/esp32-micropython-tutorials/
mailto:warthog9@eaglescrag.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

