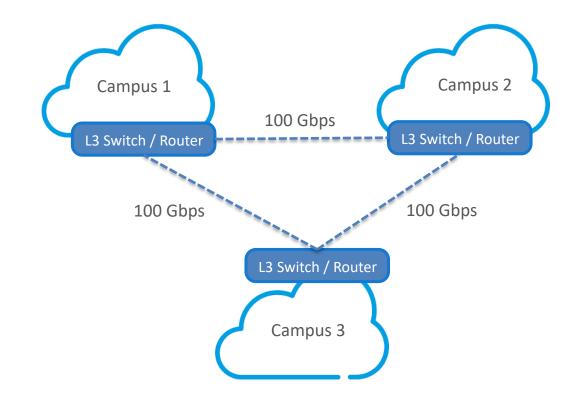


100 Gbps Open-Source Software Router? It's Here.

Jim Thompson, CTO, Netgate

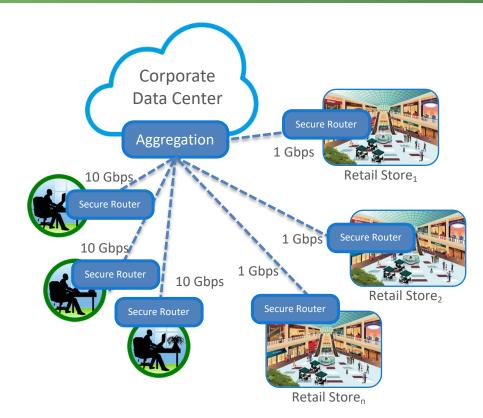
@gonzopancho



Agenda

- Edge Router Use Cases 'Need for Speed'
- Cost, Flexibility, Control, Evolution
- The Engineering Challenge
- Solution Components
- Test Configuration & Results
- Productization
- Value Proposition
- Vendor Value Add

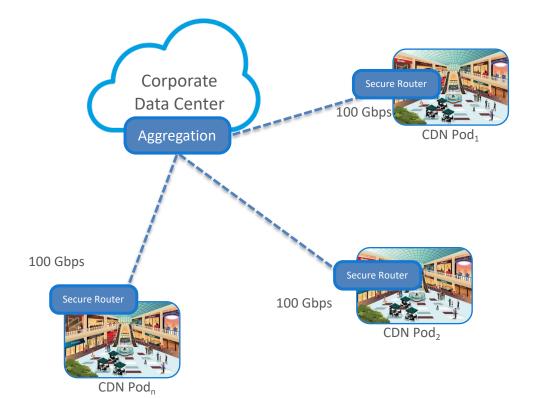
100 Gbps Edge Router Use Case #1



<u>Need</u>

- Campuses equipped with 100 Gbps white box h/w and fast NICs
- Secure routing software cannot keep up
- Limits campus interconnect to <10 Gbps of IMIX traffic

100 Gbps Edge Router Use Case #2



<u>Need</u>

- 1 10 Gbps secure routing needed for ecommerce, content access and developer productivity
- Big brand solution forces unnecessary features, and is expensive
- Customer wants APIbased ACL mgmt

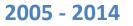
100 Gbps Edge Router Use Case #3

Need

- 100 Gbps large packet, IPSec content distribution
- Fast adaptation to network bandwidth costs
- Reduced per customer delivery costs to drive profit from competitive MRR

Evolution of Cost, Flexibility, & Control

- Vendor Proprietary H/W
- Specialty Silicon
- Vendor Proprietary S/W
- Vendor Proprietary Mgmt


- Whitebox H/W
- x86 Silicon
- Vendor Proprietary S/W
- Vendor Proprietary Mgmt

\$ User Control

- Whitebox H/W
- x86 Silicon
- Open Source High Performance S/W
- Open Source Orchestration Mgmt

2016-2017

Drivers | Enablers

Drivers

Rapid movement of workloads and data to cloud

Virtualization of everything

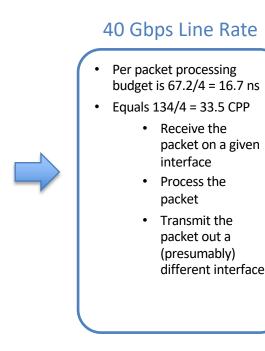
Buyer demand for network architecture freedom

Enablers

High powered, inexpensive commodity silicon

Open source Vector Packet Processing (VPP)

Open source Restful API + orchestration management

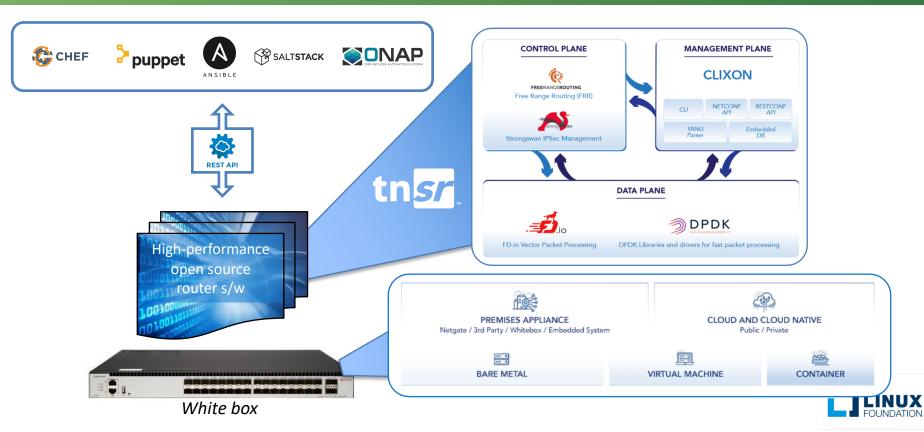


The Engineering Challenge

How do you fill a 100 Gbps pipe with small packets using s/w?

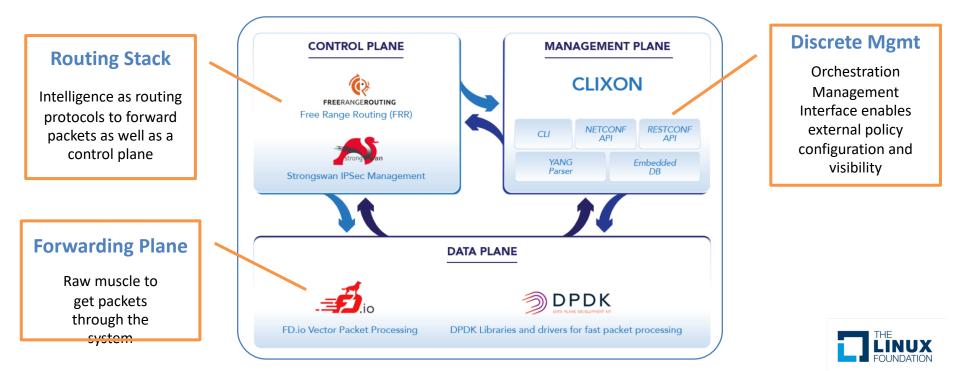
10 Gbps Line Rate

- Shortest possible Ethernet packet
 - 46 byte payload
 - 18 byte Ethernet header & CRC
 - 20 byte preamble, start-of-frame delimeter + inter-frame gap (IFG)
 - 84 byte total (672 bits)
- True line-rate is 10,000,000,000 bits per second, 672 bits at a time
- 14,880,952 packets per second
- 67.2 ns to process one packet
- A 2 GHz clock CPU core → 1 core clock cycle of 0.5 ns
- 67.2/.5 = 134 CPU clock cycles/packet (CPP)

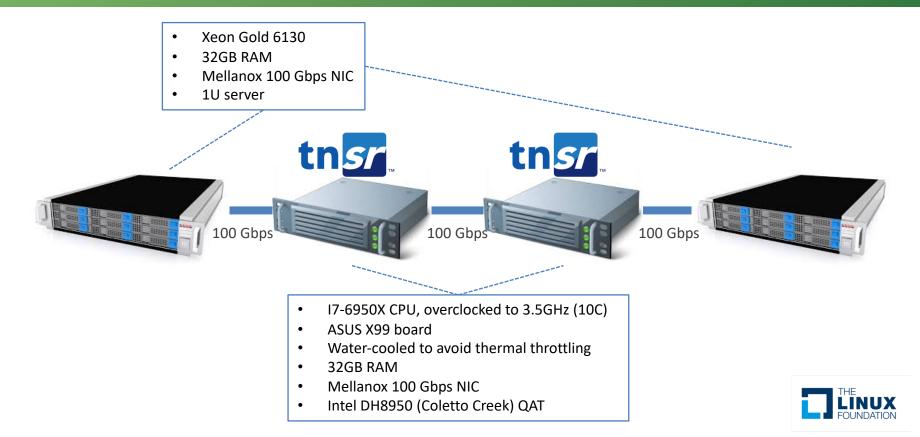


100 Gbps Line Rate

- Per packet processing budget is 67.2/10 = 6.7 ns
- Equals 134/10 = 13 CPP
- 148,809,523 packets per second
- Secure routing s/w cannot get there with kernel-based, single packet per time processing
- Enter Vector Packet Processing (VPP)



Key Solution Components



Key Software Components

TNSR: Open Source-based Secure Networking Software Platform

Test Configuration

Packet Processing Test Results

Strea

64 byt

64 byt

128 b

128 b

128 b

256 b

256 b

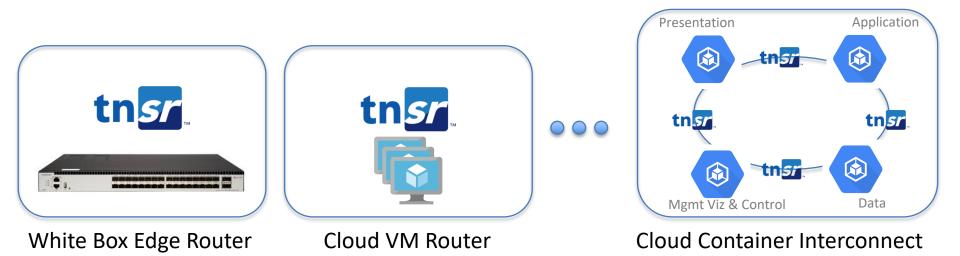
256 b

512 b

512 b 512 b

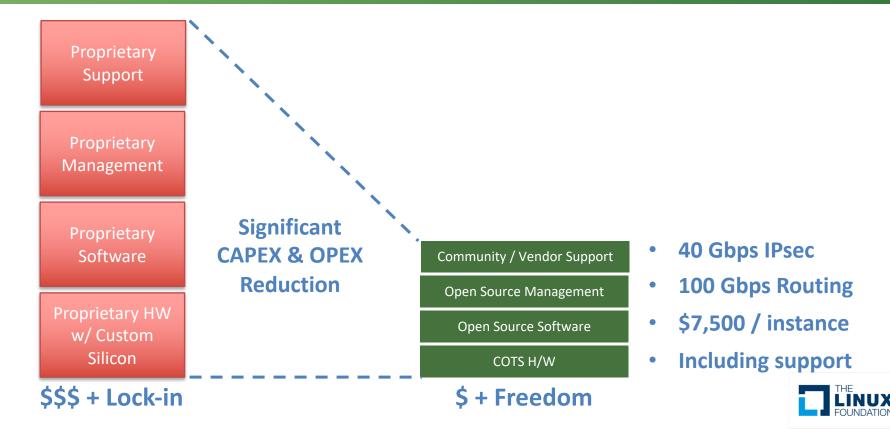
1380 1380

	Мррз					
# Streams / Cores	1/1	2/2	8/8	8/256		
Stream Type						
64 byte	14.1	28.3	67.6	56.3		
64 byte; AES-CBC-128	4.5		10.7			
64 byte; AES-GCM	4.3		9.0			
128 byte	12.6	22.6	58.0	48.0		
128 byte; AES-CBC-128	4.5		10.5			
128 byte; AES-GCM	4.2		8.9			
256 byte	6.3	11.2	30.7	34.1		
256 byte; AES-CBC-128	3.7		10.0			
256 byte; AES-GCM	3.5		8.6			
512 byte	6.0	12.0	23.5	21.7		
512 byte; AES-CBC-128	3.5		7.7			
512 byte; AES-GCM	3.4		8.6			
1380 byte; AES-CBC-128	3.5		3.5			
1380 byte; AES-GCM	2.8		3.8			


		Gbps		
# Streams / Cores	1/1	2/2	8/8	8/256
n Type				
te	9.48	19.02	45.43	37.83
te; AES-CBC-128	3.02		7.19	
te; AES-GCM	2.89		6.05	
yte	14.92	26.76	68.67	56.83
yte; AES-CBC-128	5.33		12.43	
yte; AES-GCM	4.97		10.54	
yte	13.91	24.73	67.79	75.29
yte; AES-CBC-128	8.17		22.08	
yte; AES-GCM	7.73		18.99	
yte	25.54	51.07	100.02	92.36
yte; AES-CBC-128	14.90		32.77	
yte; AES-GCM	14.47		36.60	
byte; AES-CBC-128	39.20		39.20	
byte; AES-GCM	31.36		42.56	

• 100 Gbps at 512 byte frames

- With these limits...
 - 10 cores
 - 40 Gbps QAT card
 - Single socket i7
- Lab cost (S/W not incl.)...
 - \$2,000 box (mostly CPU)
 - \$700 NIC
 - \$650 CPIC (QAT) card
- ...and the H/W can be boosted
 - 2/4 socket boxes w/ NUMA
 - More cores
 - Faster NICs


Productization

Speed, Scale, Flexibility – when and where you need it.

Value Proposition

Who Needs an Open Source Vendor?

FLEETWOOD MAC

- 'Free like a puppy'
- All software evolves, has issues
- Requires understanding, software integration development, productization, testing, verification, packaging, distribution, support
- Is it worth your time?

"Won't you please, please help me..."

- Open source software productization vendor
- Moved from project to product
- Development, productization, testing, verification, packaging, distribution, support provided
- Fraction of the cost of proprietary vendor model

Summary

- Superfast, highly scalable, open-source based router
- Fast, easy and cheap to reconfigure or add new services
- At a fraction of today's prices
- Utility-based secure networking affordable for all
- Open source vendors make it ready for prime time

THE LINUX FOUNDATION OPEN SOURCE SUMMIT EUROPE

