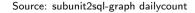



# Machine Learning for Cl


Kyra Wulffert
kwulffert@yahoo.com
Matthew Treinish
mtreinish@kortar.org
Andrea Frittoli
andrea.frittoli@gmail.com



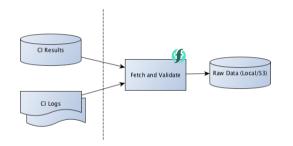
#### CI at Scale



- Continuous Integration
- Continuous Log Data
- ► Lots of data, little time
- Triaging failures?
- ► Al to the rescue!






#### The OpenStack use case

- Integration testing in a VM
- ► System logs, application logs
- Dstat data
- ► Gate testing
- ► Not only OpenStack

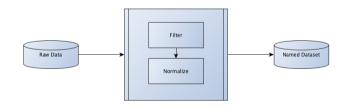
Normalized system average load for different examples



# Collecting data



- Automation and repeatability
- ► Light-weight data validation
- Object storage for data
- ► Periodic Action on OpenWhisk


Data caching diagram



### Experiment Workflow

- Visualize data
- ▶ Define a dataset
- ► Define an experiment
- ► Run the training
- Collect results
- ► Visualize data

```
# Build an s3 backed dataset
ciml-build-dataset -- dataset cpu-load-1min-dataset \
-- build-name tempest-full \
-- slicer :2000 \
-- sample-interval 10min \
-- features-regex "(usr|1min)" \
-- class-label status \
-- tdt-split 7 0 3 \
-- data-path s3://cimldatasets
```







#### Data Selection

- ► What is dstat data?
- ► Experiment reproducibility
- Dataset selection
  - ► Dstat feature selection
  - ► Data resolution (down-sampling)

#### Sample of dstat data

| time                | usr  | used                | writ                | 1m   |
|---------------------|------|---------------------|---------------------|------|
| 16/03/2018 21:44:52 | 6.1  | $7.36 \cdot 10^{8}$ | $5.78 \cdot 10^{6}$ | 0.97 |
| 16/03/2018 21:44:53 | 7.45 | $7.43 \cdot 10^{8}$ | $3.6 \cdot 10^{5}$  | 0.97 |
| 16/03/2018 21:44:54 | 4.27 | $7.31 \cdot 10^{8}$ | $4.01 \cdot 10^{5}$ | 0.97 |
| 16/03/2018 21:44:55 | 1    | $7.43 \cdot 10^{8}$ | 4,096               | 0.97 |
| 16/03/2018 21:44:56 | 0.5  | $7.44 \cdot 10^{8}$ | $1.5 \cdot 10^{7}$  | 0.97 |
| 16/03/2018 21:44:57 | 1.75 | $7.31 \cdot 10^{8}$ | 4,096               | 0.97 |
| 16/03/2018 21:44:58 | 0.88 | $7.43 \cdot 10^{8}$ | 4,096               | 0.9  |
| 16/03/2018 21:44:59 | 1.39 | $7.31 \cdot 10^{8}$ | $4.51 \cdot 10^{5}$ | 0.9  |
| 16/03/2018 21:45:00 | 1.01 | $7.44 \cdot 10^{8}$ | 4,096               | 0.9  |
| 16/03/2018 21:45:01 | 0.75 | $7.46 \cdot 10^{8}$ | 61,440              | 0.9  |
| 16/03/2018 21:45:02 | 1.26 | $7.31 \cdot 10^{8}$ | 4,096               | 0.9  |
| 16/03/2018 21:45:03 | 1.13 | $7.44 \cdot 10^{8}$ | 4,096               | 0.82 |
| 16/03/2018 21:45:04 | 5.77 | $7.77 \cdot 10^{8}$ | $1.72 \cdot 10^{5}$ | 0.82 |
| 16/03/2018 21:45:05 | 9.85 | $8.31 \cdot 10^{8}$ | $4.99 \cdot 10^{6}$ | 0.82 |
| 16/03/2018 21:45:06 | 3.88 | $8.46 \cdot 10^{8}$ | $8.25 \cdot 10^{7}$ | 0.82 |

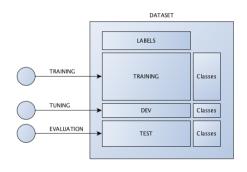


#### Data Normalization

▶ Unrolling

#### Sample of unrolled data

| usr1 | usr2 | usr3 | 1m1  | 1m2  | 1m3  |
|------|------|------|------|------|------|
| 6.1  | 1.75 | 1.26 | 0.97 | 0.97 | 0.9  |
| 5.9  | 1.5  | 3.1  | 0.9  | 0.92 | 0.97 |
| 5.8  | 1 76 | 22   | 0.89 | 0.91 | 0.94 |


#### Normalizing

#### Sample of normalized data

| usr1 | usr2 | usr3 | 1m1  | 1m2  | 1m3  |
|------|------|------|------|------|------|
| 0.6  | 0.3  | -0.5 | 0.6  | 0.6  | -0.5 |
| -0.1 | -0.7 | 0.5  | -0.3 | -0.2 | 0.5  |
| -0.4 | 0.3  | 0    | -0.4 | -0.4 | 0    |



# Building the dataset

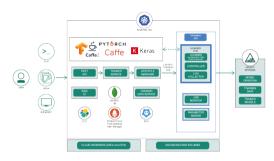


Structure of a dataset

- ► Split in training, dev, test
- ► Obtain classes
- ► Store normalized data on s3
- ► Input function for training
- ► Input function for evaluation



#### Experiment Workflow


- Visualize data
- ▶ Define a dataset
- Define an experiment
- ► Run the training
- Collect results
- Visualize data

```
# Define a local experiment
ciml-setup-experiment — experiment dnn-5x100 \
-- estimator tf.estimator.DNNClassifier \
-- hidden-layers 100/100/100/100/100 \
-- steps $(( 2000 / 128 * 500 )) \
-- batch-size 128 \
-- epochs 500 \
-- data-path s3://cimldatasets
```

```
# Train the model locally based on the dataset and experiment
# Store the evaluation metrics as a JSON file
ciml-train-model —-dataset cpu-load-1min-dataset \
--experiment dnn-5x100 \
--data-path s3://cimldatasets
# Train the same model in a FfDL cluster
ffdl train.sh cpu-load-1min-dataset dnn-5x100
```



# Training Infrastructure

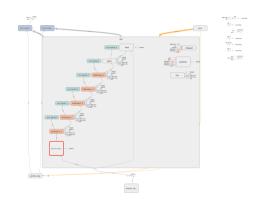


FfDL Architecture - Source: https://developer.ibm.com/code/

- TensorFlow Estimator API
- CIML wrapper
- ► ML framework interchangable
- ► Training Options:
  - ▶ Run on a local machine
  - ► Helm deploy CIML, run in containers
  - Submit training jobs to Ffdl
  - ► Kubeflow



#### Prediction


- ► Event driven: near real time
- ▶ No request to serve the prediction to
- ► MQTT Trigger from the CI system
- ► CIML produces the prediction
- ► Trusted Source: Continuous Training

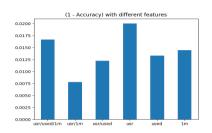
- ► CIML kubernetes app components:
  - MQTT Client receives events
  - Data module fetches and prepares data
  - ► TensorFlow wrapper issues the prediction
  - Example: comment back on Gerrit/Github

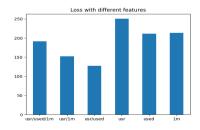


# DNN - Binary Classification

- ► Classes: Passed or Failed
- Supervised training
- ► TensorFlow *DNNClassifier*, classes=2
- Dataset:
  - CI Job "tempest-full"
  - Gate pipeline only
  - ▶ 3000 examples, 2100 training, 900 test
- Hyper-parameters:
  - Activation function: ReLU
  - Output layer: Sigmoid
  - ► Optimizer: Adagrad
  - ► Learning rate (initial): 0.05
  - ▶ 5 hidden layers, 100 units per layer
  - ▶ Batch Size: 128, Epochs: 500



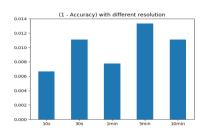

Network Graph - Source: TensorBoard

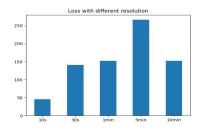



#### DNN - Binary Classification

- ► Selecting the best feature set
- Primary metric: accuracy
- ► Aim for lower loss, caveat: overfitting
- ► Key:
  - ▶ usr: User CPU
  - used: Used Memory
  - ▶ 1m: System Load 1min Average
  - ▶ Data Resolution: 1min
  - ► Source: TensorFlow evaluation
- ► Winner: (usr, 1m) tuple
- ► Accuracy achieved: 0.992
- ▶ 7 mistakes on a 900 test set






#### DNN - Binary Classification

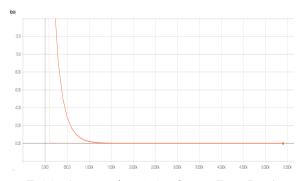
- Selecting the data resolution
- ► Primary metric: accuracy
- ► Aim for lower loss, caveat: overfitting
- Note: careful with NaN after down-sampling
- ► Key:
  - ► Original data frequency: 1s
  - x-axis: new sampling rate
  - ► Features: (usr, 1m)
  - ► Source: TensorFlow evaluation
- ► Winner: 10s
- ► Accuracy achieved: 0.993
- ▶ 7 mistakes on a 900 test set







# Changing test job

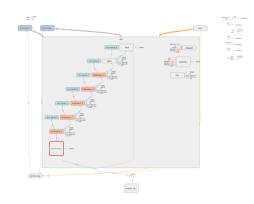

| metric               | tempest-full | tempest-full-py3 |
|----------------------|--------------|------------------|
| accuracy             | 0.994        | 0.953            |
| loss                 | 47.176       | 86.873           |
| auc_precision_recall | 0.949        | 0.555            |

- ► Train with "tempest-full"
- ► Evaluating with "tempest-full-py3"
  - Similar setup, uses python3
  - It does not include swift and swift tests
  - ► 600 examples evaluation set
- Dataset and training setup:
  - ► Features: (usr, 1m)
    - ► Resolution: 1min
    - ► Same hyper-parameters



# Binary Classification - Summary

- ▶ User CPU and 1min Load Avg
- ► Resolution: 10s best, 1 minute may be enough
- ► High accuracy: 0.993
- ► High auc\_precision\_recall: 0.945
- ► A trained model might be applicable to similar CI jobs

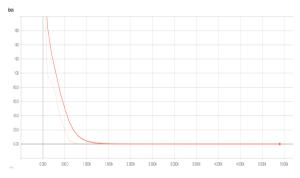



Training Loss - usr/1m, 1min - Source: TensorBoard



#### DNN - Multi Class

- ► Classes: Hosting Cloud Provider
- Supervised training
- ► TensorFlow *DNNClassifier*, classes=10
- Dataset:
  - CI Job "tempest-full"
  - Gate pipeline only
  - ▶ 3000 examples, 2100 training, 900 test
- ► Hyper-parameters:
  - Activation function: ReLU
  - Output layer: Sigmoid
  - Optimizer: Adagrad
  - ► Learning rate (initial): 0.05
  - ▶ 5 hidden layers, 100 units per layer
  - ▶ Batch Size: 128, Epochs: 500

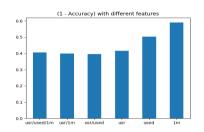


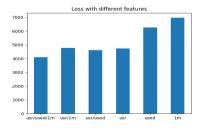

Network Graph - Source: TensorBoard



#### DNN - Multi Class

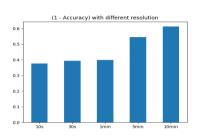
- ► Features: (usr, 1m)
- ▶ Resolution: 1min
- ► Loss converges, but...
- ► Evaluation accuracy achieved: 0.601
- ► Not good!





Training Loss - usr/1m, 1min - Source: TensorBoard



#### Multi Class - Different Features


- ► Try different combinations of features
- ► Primary metric: accuracy
- ▶ Aim for lower loss, caveat: overfitting
- ► Key:
  - ▶ usr: User CPU
  - used: Used Memory
  - ▶ 1m: System Load 1min Average
  - ▶ Data Resolution: 1min
  - Source: TensorFlow evaluation output
- ► No real improvement
- ► Best accuracy achieved: 0.603
- Adding Disk I/O or process data does not help either

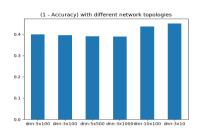


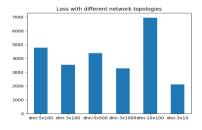


### Multi Class - Changing Resolution

- Trying to change the data resolution
- ► Primary metric: accuracy
- ► Aim for lower loss, caveat: overfitting
- ► Key:
  - ► Original data frequency: 1s
  - x-axis: new sampling rate
  - ► Features: (usr, 1m)
  - ► Source: TensorFlow evaluation
- ► No real improvement
- ▶ Best accuracy achieved: 0.624

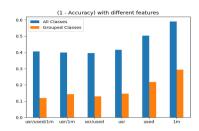





# Multi Class - Network topology

- Trying to change the network depth
- Trying to change number of units per layer
- ► Primary metric: accuracy
- ▶ Aim for lower loss, caveat: overfitting
- ► Key:
  - x-axis: units and hidden layers
  - ► Features: (usr, 1m)
  - ► Resolution: **1min**
  - ► Source: TensorFlow evaluation
- ► No real improvement
- ▶ Best accuracy achieved: 0.668

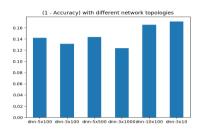


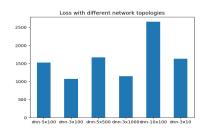





# Multi Class - Reducing the number of classes

- Reducing the number of classes
  - Different regions from a Cloud Operator
  - ► Consider as a single class
  - ▶ New number of classes is 6
- Experiments:
  - ► Train with different feature sets
  - Train with different resolutions
  - ► Source: TensorFlow evaluation
- Significant improvement!
- ▶ Best accuracy achieved: 0.902
- ▶ What does that mean?






# Multi Class - Tuning network topology

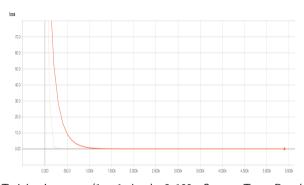
- ► Tuning network topology
- Experiments:
  - x-axis: units and hidden layers
  - Features: (usr, 1m)Resolution: 1min
- ► Some improvement
- ▶ Winner: 3x100. Accuracy: *0.925*







# Multi Class - Changing test job


| metric       | tempest-full | tempest-full-py3 |
|--------------|--------------|------------------|
| accuracy     | 0.925        | 0.775            |
| average_loss | 0.978        | 3.271            |
| loss         | 586.713      | 1,962.447        |

- ► Train with "tempest-full"
- Evaluating with "tempest-full-py3"
  - ► Similar setup, uses python3
  - It does not include swift and swift tests
  - ▶ 600 examples evaluation set
- Dataset and training setup:
  - ► Features: (usr, 1m)
  - ► Resolution: 1min
  - ► Same hyper-parameters (dnn-3×100)



# Multi Class - Summary

- ► User CPU and 1min Load Avg
- ► Resolution: 1 minute is enough
- ► Hyperparameters: 3 hidden layers, 100 units each
- ► Reasonable accuracy: 0.925
- ► A trained model is not applicable to similar CI jobs



Training Loss - usr/1m, 1min, dnn3x100 - Source: TensorBoard



#### Conclusions

- ► Collect data
- ► Know your data
- ► Work with cloud tools
- ▶ Able to confirm that system load plays a role in failures
- ► Load profiles are consistent across regions in our cloud providers



#### Future Work

- ▶ Build a service with persistence to track experiments over time
- Look at adapting techniques for new models with different data
- Human curated dataset for supervised training
- Research clustering techniques for unspervised training
- Explore job portability



Questions?

- ► This talk: https://github.com/afrittoli/ciml\_talk
- ► CIML:https://github.com/mtreinish/ciml

