ONAP Close Loop Control for Edge Cloud with Distributed MultiCloud

Bin Yang, Wind River, ONAP Multi-VIM/Cloud PTL
Sept. 2018 Open Networking Summit Europe
Agenda

- ONAP Multi-VIM/Cloud and Edge Automation

- Workshop: Close Loop Control for Edge Cloud with distributed MultiCloud
Challenges of Edge Automation

- **Edge Infrastructure for NFV**
 - Could consist of hundreds of physical data centers of small scale
 - With dynamic changes during their lifecycles
 - Comes with very limited resources which requires good utilization by various intelligent and automated orchestration
 - Requires near real-time close loop automation and aggregation of FCAPS data streaming

- **The challenges**
 - LCM of Edge Infrastructure: On-Boarding, De-Commissioning.
 - LCM of Resource of Edge Infrastructure: Discovery/Updating/Representing.
 - Increase resource utilization while remains flexible
 - Near real-time collecting/aggregating/reacting to FCAPS data/events
ONAP Multi-VIM/Cloud and Edge Automation

- Automating the on-boarding of Edge Clouds
- Supports to policy based VNF placement/homing to Edge Clouds
- Automating the discovery/representation of Infrastructure Resources of Edge Clouds
- Aggregates FCAPS data and Near real-time control on Edge Clouds
MultiCloud automates the on-boarding of Edge Clouds

- Edge Infrastructure with Hundreds of Physical Data Centers
 - Could be a burden for Infrastructure providers.
 - **Multi-Region** could be one of solution to mitigate the pain of O&M for Infra. Providers.
 - ONAP could leverage this multi-region solution to automate the on-boarding process of hundreds of Physical Data Centers into ONAP.
 - ONAP user will fill the access information for the primary region only
 - MultiCloud plugin will discover all secondary regions and register the corresponding cloud regions into AAI.
 - Will be realized in ONAP Multi-VIM/Cloud in Casablanca Release
MultiCloud aggregates FCAPS data and support NRT close loop control on Edge Clouds

- **MultiCloud@Edge**
 - MultiCloud micro-services could be deployed approaching to edge infrastructures
 - Local cache of part of AAI inventory.
 - Synchronization
 - VESAgent in the MultiCloud@Edge
 - Collect FCAPS data of local edge infrastructures
 - Aggregate the data and events according to configuration/policy rules
 - Convert data/events conforming to VES specs, send them back via DMaaP/RESP
 - Policy based Near Real-Time close loop control
Workshop: Close Loop automation for Edge Cloud with distributed ONAP MultiCloud

- This workshop will
 - Showcase how MultiCloud could help ONAP to assure services by close loop control over Infrastructure resources
 - Be featured of distributed MultiCloud on edge clouds and the configurable VESagent to consolidate/aggregate telemetry data
 - PoC to evaluate how distributed MultiCloud to support edge automation by enhancing the close loop control over edge clouds
 - Walk you through the comprehensive process to deploy and provision ONAP, orchestrate VNF and setup close loop control.
Deployment Topology
Control/Data Flow for Close Loop Control

Central Cloud

Edge Cloud

Report FCAPS events

Check VM health

VNF/VM

Central Cloud

VES collector

MultiCloud

DMaaS

DMaaS collector

Policy

Mocking Policy Actor

APPC-LCM-READ

APPC-CL-OUT

SECFault_OU

TPUT

Control/Data Flow for Close Loop Control
Recipes

- **Infrastructures**
 - Central Cloud powered by **Wind River Titanium Cloud**
 - Titanium Cloud is the Carrier Grade OpenStack distribution offered by Wind River
 - Upstreamed to Open Source Communities
 - OpenStack StarlingX project, LFN Akraino
 - Verified and validated with various Open Source community and 3rd party’s offerings
 - ONAP, OPNFV, etc.
 - Most of ONAP Open Labs are powered by Titanium Cloud:
 - ONAP Integration lab
 - CMCC Open Lab and China Telecom Open Lab
 - Edge Clouds powered by **Wind River Titanium Cloud, Distributed Cloud mode**
 - Support distributed subclouds of small scale with HA, high performance, low latency features,
 - scalable from 1 or 2 hardware nodes to many.
Recipes

- Platform
 - Heat templates to deploy ONAP Beijing Release
 - Heat templates to deploy distributed ONAP MultiCloud services
 - Patches to enhance ONAP Robot scripts
 - Mocking Policy Actor to control infrastructure resource
Recipes

- VNF
 - vDNS heat templates

- Tools
 - POSTMAN
 - Curl
Step 1: Deploy ONAP instance to Central Cloud

- Provision OpenStack resources for ONAP instance
 - Admin creates tenant with user, allocate Quota. e.g. tenant “VIM”, tenant user: “demo”.
 - Admin creates flavors, e.g. m1.small, m1.medium, m1.large, m1.xlarge
 - Admin creates shared external network, e.g. “external”
 - Admin uploads images of ubuntu-14.04LTS and ubuntu-16.04LTS, e.g. “ubuntu-14-04-cloud-amd64”, “ubuntu-16-04-cloud-amd64”
 - Tenant user to create keypair, e.g. “onap_key”
 - Tenant user collects: keystone endpoint, OpenStack Region ID, dns list,

- Populate ONAP heat env file
 - Clone demo project
 - $ git clone -b beijing https://gerrit.onap.org/r/demo
 - Populate the parameters to “demo/heat/ONAP/onap_openstack.env”
 - With collected info
 - Further tweaking:
 - dcae_deployment_profile: R2MVP
 - mvim_docker: 1.2.0-STAGING
 - mvim_openstack_docker: 1.2.0-STAGING
Step 1: Deploy ONAP instance to Central Cloud

- Deploy ONAP instance with heat templates
 - Login to horizon and download the access file, e.g. VIM-openrc.sh
 - Launch the ONAP with populated heat template
 - $ source VIM-openrc.sh
 - $ openstack stack create -t onap_openstack.yaml -e onap_openstack.env onap_beijing_heat
 - Wait till the stack is created completed
 - List all ONAP VMs and capture the floating IPs for each VM
 - $ openstack server list

- Healthcheck
 - Now ONAP is to booting up, check the status by robot script on the robot VM:
 - $ ssh -o StrictHostKeyChecking=no -i /home/wruser/.ssh/onap_key ubuntu@<robot_vm_ip>
 - $ sudo docker exec -it openecompete_container /var/opt/OpenECOMP_ETE/runTags.sh -i health h -d ./html -V /share/config/integration_robot_properties.py -V /share/config/integration_preload_parameters.py -V /share/config/vm_properties.py
Step 1: Deploy ONAP instance to Central Cloud

- Portals access
 - If the healthcheck is passed, provision your local hosts resolving file like below:
 - $ cat /etc/hosts
 - 10.12.6.191 policy.api.simpledemo.onap.org
 - 10.12.7.24 portal.api.simpledemo.onap.org
 - 10.12.6.182 sdc.api.simpledemo.onap.org
 - 10.12.5.24 vid.api.simpledemo.onap.org
 - 10.12.6.175 aai.api.simpledemo.onap.org
 - 10.12.5.187 sdnc.api.simpledemo.onap.org
 - 10.12.6.199 so.api.simpledemo.onap.org
 - 10.12.7.25 msb.api.simpledemo.onap.org
 - 10.12.7.25 msb-discovery
 - Browse the portal GUI with url:
 - The user guide can be found:
Step 1: Deploy ONAP instance to Central Cloud

- Build and launch your own robot service
 - Login to Robot VM, build and lunch the robot service with following instruction:

- Build Mocking Policy Actor (multicloud-dmaapclient)
 - Login to Policy VM, build and launch mocking service with following instruction:
 - https://github.com/biny993/onap-multicloud-edge-demo/tree/master/docker4dmaapclient/readme.txt
Step 2: Deploy Distributed MultiCloud to Edge Cloud

- **Provision the Edge Cloud**
 - Similar to Central Cloud

- **Populate heat env file**
 - Download heat template from github
 - Populate the heat env file
 - aai1_ip_addr refers to floating IP of “vm0-aai-inst1” from ONAP on central cloud
 - dcae_ip_addr refers to floating IP of “vm0-dcae” from ONAP on central cloud

- **Deploy distributed ONAP MultiCloud to Edge Cloud**
 - $ openstack stack create -t onap_beijing_edge.yaml -e onap_beijing_edge.env onap_edge_beijing_heat

- **Healthcheck**
 - Execute the same script as central ONAP,
 - Observe the healthcheck status for following components:
 - multicloud-framework
 - multicloud-titaniumcloud
 - msb
Step 3: Prior to VNF orchestration

- Prior to VNF orchestration:
 - Load default customer and distribute model
 - Create complex: clli3
 - On-board the edge cloud to ONAP as a cloud region
 - Register the cloud region to SO
 - Add a customer
 - Associate the cloud region with the customer
 - Instructions can be found
Step 4: VNF orchestration: instantiate NS/VNF/VF module

- To orchestrate a VNF:
 - Instantiate NS, add generic VNF by VID portal
 - Preload data for VF module by robot script
 - Add VF module with VID portal
 - Validate the VF module by OpenStack Horizon
 - Bridge heat resource into AAI
 - Curl command with postman
 - Instruction can be found:
Step 5: Setup Close Loop Control

- To setup the close loop control:
 - Provision mocking policy actor with curl command
 - Provision policy
 - Provision holmes rules with curl command
 - Provision multicloud vesagent with curl command
 - Instruction can be found:
 - https://github.com/biny993/onap-multicloud-edge-demo/tree/master/close-loop
Step 6: Test and observe the Close Loop Control

- To test with this close loop:
 - Simulate VM failures
 - Observing the action upon the failed VM
 - Instruction can be found
Summary and Vision

- **ONAP MultiCloud**
 - Ready for distributed deployment to support edge automation
 - With the complete edge automation solution, it can not only aggregate the FCAPS traffic, but also enable the whole close loop on edge with lower latency to recover from a failure.
 - The VESagent will be enhanced and integrated with clamp/policy project to automate the provision
 - There should be a Policy Actor developed to allow policy control infrastructure resource via multicloud.
Q & A

- ONAP wiki
 - https://wiki.onap.org/

- ONAP discussion mail list
 - https://lists.onap.org/g/main

- Email:
 - bin.yang@windriver.com