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Machine Learning 
● Why do we care
● What is Machine Learning
● Data Science Principles
● Different Personas
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Why is machine learning taking off?
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CONFIDENTIAL



CONFIDENTIAL
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CONFIDENTIAL
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What you want to be doing
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Get 
Data Write intelligent machine learning code Train 

Model
Run
Model

Repeat
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Sculley, D., Holt, G., Golovin, D. et al. Hidden Technical Debt in Machine Learning Systems

What you’re actually doing



Data Science 
Principles
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Do we need Data Science Engineering 
Principles?

16

Software Engineering
The application of a systematic, disciplined, 
quantifiable approach to the development, 
operation, and maintenance of software
IEEE Standard Glossary of Software Engineering 
Terminology



Do we need Data Science Engineering 
Principles?
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Software Engineering
The application of a systematic, disciplined, 
quantifiable approach to the development, 
operation, and maintenance of software
IEEE Standard Glossary of Software Engineering 
Terminology
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• Do I need Machine Learning? *
• Do I need {Neural Networks, Regression,...}*

• What dataset(s)?
– Quality?

• What target/serving environment?
• What model architecture?
• Pre-trained model available?
• How many training resources?
• Required Model Freshness? 

* Can I actually use ...

Challenge: Requirements Engineering
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Machine Learning

http://btimmermans.com/2017/12/11/machine-learning-overview/
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Fast.ai
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Deep Learning: The Promise
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Deep Learning: Insights

https://arxiv.org/pdf/1506.06579.pdf
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Deep Learning: The Process

Step 1: Training
(In Data Center - Over Hours/Days/Weeks)

Step 2: Inference
(Endpoint or Data Center - Instantaneous)

Dog

Input:
Lots of Labeled 

Data

Output:
Trained Model

Deep neural 
network model

Trained 
Model

Output:
Classification

Trained Model

New Input from 
Camera or 

Sensor

97% Dog
3% 
Panda
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Deep Learning: The Process
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Challenge: Persona(s)



The Rise of the DataOps Engineer

Combines two key skills:

- Data science
- Distributed systems engineering

The equivalent of DevOps for Data Science

26



TensorFlow & 
Jupyter
● First Hands-On Machine 

Learning
● Open Source Technologies

○ TensorFlow
○ Jupyter

● Labs
○ Mnist with Google Colab
○ Deploy and use Jupyter

Distributed TF, Horovod, 
Rendezvous Architecture,

Serving 

What is 
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Spark, KubeFlow, TF 
Serving

MLFlow, Jenkins

Model Optimization, 
Feature Store,

Hyperparameter Opt
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TensorFlow Overview 

“An open-source software library for Machine Intelligence” - tensorflow.org

● Tensorflow is a software library that makes it easy for 
developers to construct artificial neural networks to analyze 
their data of interest

TensorFlow 
LibraryPython

Dataflow 
Executor,

Compute Kernel 
Implementations, 
Networking, etc.

GPUs

CPUs
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ML Frameworks Overview 



31

Alternatives
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Alternatives

tf.enable_eager_execution()
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Challenge: Writing Distributed Model Functions
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TensorFlow Estimator & Keras APIs

• Prefered APIs

return tf.estimator.Estimator(

   model_fn=model_fn,  # First-class function

   params=params,  # HParams

   config=run_config  # RunConfig

)



Lab 0: Fashion Mnist 
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https://www.tensorflow.org/tutorials/keras/basic_classification

https://www.tensorflow.org/tutorials/keras/basic_classification


Lab 1: JupyterLab 

 DataOps: Setup Environment

Data Scientist: Use distributed resources 

1. Install HDFS
2. Install Marathon-LB (Proxy)
3. Install Jupyter
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Connect to Cluster 

-

38

USER: bootstrapuser
Password: deleteme



Lab 1: HDFS 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Marathon-LB 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Jupyter 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Jupyter 
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http://api.hdfs.marathon.l4lb.thisdcos.directory/v1/endpoints

https://github.com/dcos/demos/tree/master/jupyterlab/1.11

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Jupyter 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Jupyter 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

<External>/jupyterlab-notebook
PW: jupyter

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Jupyter 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

val NUM_SAMPLES = 10000000

val count2 = 

spark.sparkContext.parallelize(1 to 

NUM_SAMPLES).map{i =>

  val x = Math.random()

  val y = Math.random()

  if (x*x + y*y < 1) 1 else 0

}.reduce(_ + _)

println("Pi is roughly " + 4.0 * 

count2 / NUM_SAMPLES)

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Jupyter 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

eval \

  spark-submit \

  ${SPARK_OPTS} \

  --verbose \

  --class 

org.apache.spark.examples.SparkPi \

  

/opt/spark/examples/jars/spark-example

s_2.11-2.2.1.jar 100

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


Lab 1: Jupyter 
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

https://github.com/dcos/demos/tree/master/jupyterlab/1.11


First Pipeline
● Pipeline overview

○ KubeFlow
○ TFX
○ Michelangelo

● Open Source Technologies
○ Kubeflow
○ TF Serving

● Labs
○ [opt] Serving
○ [opt] KubeFlow

Distributed TF, Horovod, 
Rendezvous Architecture,

Serving 

What is 
Machine Learning?

TensorFlow, Jupyter,Spark

Kubeflow, TF Serving

MLFlow, Jenkins

Model Optimization, 
TensorFlow Hub,

Feature Store
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Challenge: Serving

• How to Deploy Models?
– Zero Downtime
– Canary

• Multiple Models?
– Testing

• TensorFlow Serving
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Challenge: Serving Environment

• How to Deploy Models?
– Zero Downtime
– Canary

• Multiple Models?
– Testing

https://ai.googleblog.com/2016/02/running-your-models-in-
production-with.html

https://ai.googleblog.com/2016/02/running-your-models-in-production-with.html
https://ai.googleblog.com/2016/02/running-your-models-in-production-with.html


Lab: (Optional) TensorFlow Serving 
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https://www.tensorflow.org/serving/serving_basic
https://www.tensorflow.org/serving/serving_advanced

# Download the TensorFlow Serving Docker image and repo

docker pull tensorflow/serving

git clone https://github.com/tensorflow/serving

# Location of demo models

TESTDATA="$(pwd)/serving/tensorflow_serving/servables/tensorflow/testdata"

# Start TensorFlow Serving container and open the REST API port

docker run -t --rm -p 8501:8501 \

   -v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" \

   -e MODEL_NAME=half_plus_two \

   tensorflow/serving &

# Query the model using the predict API

curl -d '{"instances": [1.0, 2.0, 5.0]}' \

   -X POST http://localhost:8501/v1/models/half_plus_two:predict

# Returns => { "predictions": [2.5, 3.0, 4.5] }

https://www.tensorflow.org/serving/serving_basic
https://www.tensorflow.org/serving/serving_advanced
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Pipeline.ai

https://pipeline.ai/

https://pipeline.ai/
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Pipeline.ai

https://community.cloud.pipeline.ai/admin/app
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Rendezvous Architecture

https://mapr.com/ebooks/machine-learning-logistics/ch03.html

https://mapr.com/ebooks/machine-learning-logistics/ch03.html


1. Data Preparation 
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving



1. Data Preparation using 
Spark 

7. Streaming of requests

...

Public Cloud Pipeline

1. Data Preparation 
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving



1. Data Preparation using 
Spark 

7. Kafka stream of 
requests

DIY Open Source Pipeline

1. Data Preparation 
& Model Engineering

2. Model Training 3. Monitoring 4. Debugging 5. Model Serving



Data Science Pipeline 

Continuous Integration

Monitoring & Operations

Distributed Data 
Storage and 
Streaming 

Data Preparation 
and Analysis 

Storage of trained 
Models and 
Metadata

Use trained Model 
for Inference 

Distributed 
Training using  

Machine Learning  
Frameworks

Data & Streaming Model 
Engineering

Model 
Management Model ServingModel 

Training 

Resource and Service Management

Tensorboard
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Data Science Platforms 

• AWS Sagemaker
+ Spark, MXNet, TF
+ Serving/AB
- Cloud Only

• Google Datalab/ML-Engine

+ TF, Keras, Scikit, XGBoost

+ Serving/AB

- Cloud Only

- No control of docker images

• KubeFlow

+ TF Everywhere

- TF only

https://medium.com/intuitionmachine/google-and-ubers-best-practices-for-deep-learning-58488a8899b6
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TFX: A TensorFlow-Based Production-Scale Machine 
Learning Platform

https://www.youtube.com/watch?v=fPTwLVCq00U

http://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform

https://www.youtube.com/watch?v=fPTwLVCq00U
http://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform
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Uber Michelangelo 

“..there were no systems in place to build 
reliable, uniform, and reproducible 
pipelines for creating and managing 
training and prediction data at scale.”

• Feature store (later)

https://eng.uber.com/michelangelo/



64

Challenge: Data Quality

• Data is typically not ready to be 
consumed by ML job*
– Data Cleaning

• Missing/incorrect labels

– Data Preparation
• Same Format
• Same Distribution

* Demo datasets are a fortunate exception :)
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Challenge: Data Quality

• Data is typically not ready to be 
consumed by ML job*
– Data Cleaning

• Missing/incorrect labels

– Data Preparation
• Same Format
• Same Distribution

* Demo datasets are a fortunate exception :)

Don’t forget about the 
serving environment!!
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Spark Overview 

● Unified Analytics Engine
○ Started as batch system
○ < 2.0: Spark Streaming

■ Micro-Batches
○ > 2.0 Structure Streaming

■ Native Streaming



Batch vs Streaming
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Sensors
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Lab 3: Spark Data Cleaning 
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https://github.com/dcos-labs/dcos-jupyterlab-service/blob/master/notebooks/TFoS.ipynb

$ git clone https://github.com/yahoo/TensorFlowOnSpark

$ cd $MESOS_SANDBOX

$ curl -fsSL -O https://s3.amazonaws.com/vishnu-mohan/tensorflow/mnist/mnist.zip

$ unzip mnist.zip

$ // Should return error

$ hdfs dfs -ls  mnist/

https://github.com/yahoo/TensorFlowOnSpark


Lab 1: Spark Data Cleaning  
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https://github.com/dcos/demos/tree/master/jupyterlab/1.11

eval \

  spark-submit \

  ${SPARK_OPTS} \

  --verbose \

$(pwd)/TensorFlowOnSpark/examples/mnist/mni

st_data_setup.py \

    --output mnist/csv \

    --format csv

$ // Should not return an error

$ hdfs dfs -ls  mnist/

https://github.com/dcos/demos/tree/master/jupyterlab/1.11
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Lab: (Optional) KubeFlow 

71

https://www.kubeflow.org/docs/started/getting-started-multipass/

https://www.kubeflow.org/docs/started/getting-started-multipass/


Automation
● Need for reproducibility

○ MLFlow
○ Jenkins

● Open Source Technologies
○ MLFlow
○ Jenkins

● Labs
○ Jenkins
○ [opt] MLFlow

Distributed TF, Horovod, 
Rendezvous Architecture,

Serving 

What is 
Machine Learning?

TensorFlow, Jupyter,Spark

Kubeflow, TF Serving

MLFlow, Jenkins

Model Optimization, 
TensorFlow Hub,

Feature Store
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• Many adhocs model/training runs
• Regulatory Requirements
• Dependencies
• CI/CD 
• Git

 Challenge: Reproducible Builds

Step 1: Training
(In Data Center - Over Hours/Days/Weeks)

Dog

Input:
Lots of Labeled 

Data

Output:
Trained Model

Deep neural 
network model
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MFlow 

https://mlflow.org/

https://mlflow.org/
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MFlow 
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MFlow Tracking 

import mlflow

# Log parameters (key-value pairs)

mlflow.log_param("num_dimensions", 8)

mlflow.log_param("regularization", 0.1)

# Log a metric;

mlflow.log_metric("accuracy", 0.1)

...

mlflow.log_metric("accuracy", 0.45)

# Log artifacts (output files)

mlflow.log_artifact("roc.png")

mlflow.log_artifact("model.pkl")
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MFlow Project 

name: My Project

conda_env: conda.yaml

entry_points:

  main:

    parameters:

      data_file: path

      regularization: {type: float, default: 

0.1}

    command: "python train.py -r 

{regularization} {data_file}"

  validate:

    parameters:

      data_file: path

    command: "python validate.py {data_file}"

$mlflow run example/project -P alpha=0.5

$mlflow run git@github.com:databricks/mlflow-example.git 



78

MFlow Model 

time_created: 2018-02-21T13:21:34.12

flavors:

  sklearn:

    sklearn_version: 0.19.1

    pickled_model: model.pkl

  python_function:

    loader_module: mlflow.sklearn

    pickled_model: model.pkl

$mlflow run example/project -P alpha=0.5

$mlflow run git@github.com:databricks/mlflow-example.git 



Lab 2: MLflow
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https://www.mlflow.org/docs/latest/quickstart.html

$ git clone https://github.com/mlflow/mlflow
$ cd mlflow/
$ python 
examples/sklearn_elasticnet_wine/train.py
$ mlflow run 
https://github.com/mlflow/mlflow-example.git  
-P alpha=0.42
$ mlflow sklearn serve -m 
./mlruns/0/024e295715d64b3fb0730008a07c
1f75/artifacts/model -p 1234

https://www.mlflow.org/docs/latest/quickstart.html
https://github.com/mlflow/mlflow


Lab 2: MLflow

80
https://www.mlflow.org/docs/latest/quickstart.html

curl -X POST -H "Content-Type:application/json" 

--data '[{"fixed acidity": 6.2, "volatile 

acidity": 0.66, "citric acid": 0.48, "residual 

sugar": 1.2, "chlorides": 0.029, "free sulfur 

dioxide": 29, "total sulfur dioxide": 75, 

"density": 0.98, "pH": 3.33, "sulphates": 0.39, 

"alcohol": 12.8}]' 

http://127.0.0.1:1234/invocations

{"predictions": [6.379428821398614]}

https://www.mlflow.org/docs/latest/quickstart.html
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Challenge: CI/CD 

Continuous 
Integration

Artifact Repo & 
Container Registry

Container 
Orchestrator

Version 
Control 
System

Load 
Balancer

Production 
Environment

Continuous Delivery Pipeline

git 
push

• Automatic Build, Test, 
Deploy

• Quality Barrier
• Options

– Jenkins
– Gitlab
– TravisCI
– Skaffold
– Spinnaker
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CI/CD for Data Science

Train Model(s) Optimize 
Model(s) Test Model(s) Build Serving 

Container(s) Deploy

Model 
Engineering

Continuous Integration



Lab 3: Jenkins
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Lab 3: Jenkins
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Lab 3: Jenkins
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Lab 3: Jenkins

86
https://github.com/mesosphere/data-science-cicd

https://github.com/mesosphere/data-science-cicd


Lab 3: Jenkins

87



Model 
Management
● How to manage Models
● Open Source Technologies

○ TensorFlow Hub
○ Dask

● Labs
○ Dask Hyperparameter 

Optimization

Distributed TF, Horovod, 

What is 
Machine Learning?

TensorFlow, Jupyter,Spark

Kubeflow, TF Serving

MLFlow, Jenkins

Model Optimization, 
Feature Store,

Hyperparameter Opt
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Challenge: Data (Preprocessing) Sharing

Feature Catalogue 

Data & Streaming Model 
Engineering

Model 
Training 

• Preprocessed Data Sets valuable
– Sharing
– Automatic Refresh

• Feature Catalogue ⩬ 
Preprocessing Cache + Discovery 
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Feature Store

https://techblog.appnexus.com/lessons-learned-from-building-scalable-machine-le
arning-pipelines-822acb3412ad

https://techblog.appnexus.com/lessons-learned-from-building-scalable-machine-learning-pipelines-822acb3412ad
https://techblog.appnexus.com/lessons-learned-from-building-scalable-machine-learning-pipelines-822acb3412ad
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Uber Michelangelo 

“..there were no systems in place to build 
reliable, uniform, and reproducible 
pipelines for creating and managing 
training and prediction data at scale.”

• Feature store 

https://eng.uber.com/michelangelo/
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Feature Engineering 

https://www.featuretools.com/
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Hyperparameter Optimization 

Step 1: Training
(In Data Center - Over Hours/Days/Weeks)

Dog

Input:
Lots of Labeled 

Data

Output:
Trained Model

Deep neural 
network model

https://towardsdatascience.com/understanding-hyperparameters-and-its-op
timisation-techniques-f0debba07568

● Networks Shape
● Learning Rate
● ...



94

Hyperparameter Search 

https://towardsdatascience.com/understanding-hyperparameters-and-its-op
timisation-techniques-f0debba07568
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Dask-ML for Hyperparameter Search

https://dask-ml.readthedocs.io/en/stable/examples/hyperparameter-search.
html



Lab [Optional] Dask 
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https://mybinder.org/v2/gh/dask/dask-examples/master?filepath=machine-learning.ipynb

https://mybinder.org/v2/gh/dask/dask-examples/master?filepath=machine-learning.ipynb
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Challenge: Serving Environment

• Different Serving Environments
– Mobile
– GPU
– CPU

• Small/Fast model without 
losing too much performance

• 500 KB models…. 
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Model Optimization
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Model Optimization



Distributed 
TensorFlow
● How to distribute TensorFlow

○ {TF, Horovod}onSpark
● Open Source Technologies

○ TensorFlow
○ Spark

● Labs
○ TFonSpark

Distributed TF, Horovod, 

What is 
Machine Learning?

TensorFlow, Jupyter,Spark

Kubeflow, TF Serving

MLFlow, Jenkins

Model Optimization, 
TensorFlow Hub,

Feature Store
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TensorFlow Overview 



102

Challenge: Distributed TensorFlow
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Challenge: Distributed TensorFlow

https://eng.uber.com/horovod/

https://eng.uber.com/horovod/
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Horovod

https://eng.uber.com/horovod/

• All-Reduce to update 
Parameter 
– Bandwidth Optimal

• Uber Horovod is MPI based
– Difficult to set up 
– Other Spark based 

implementations

• Wait for TensorFlow 2.0 ;)

 

https://eng.uber.com/horovod/
http://www.cs.fsu.edu/~xyuan/paper/09jpdc.pdf
https://hops.readthedocs.io/en/latest/user_guide/tensorflow/horovod.html
https://hops.readthedocs.io/en/latest/user_guide/tensorflow/horovod.html
https://www.tensorflow.org/community/roadmap
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TF Distribution Strategy

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute

● MirroredStrategy: This does in-graph replication with synchronous training on many GPUs on one machine. Essentially, we 
create copies of all variables in the model's layers on each device. We then use all-reduce to combine gradients across the 
devices before applying them to the variables to keep them in sync.

● CollectiveAllReduceStrategy: This is a version of MirroredStrategy for multi-working training. It uses a collective op to do 
all-reduce. This supports between-graph communication and synchronization, and delegates the specifics of the all-reduce 
implementation to the runtime (as opposed to encoding it in the graph). This allows it to perform optimizations like batching 
and switch between plugins that support different hardware or algorithms. In the future, this strategy will implement 
fault-tolerance to allow training to continue when there is worker failure.

● ParameterServerStrategy: This strategy supports using parameter servers either for multi-GPU local training or 
asynchronous multi-machine training. When used to train locally, variables are not mirrored, instead they placed on the 
CPU and operations are replicated across all local GPUs. In a multi-machine setting, some are designated as workers and 
some as parameter servers. Each variable is placed on one parameter server. Computation operations are replicated 
across all GPUs of the workers.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/MirroredStrategy
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/CollectiveAllReduceStrategy
https://www.tensorflow.org/versions/master/api_docs/python/tf/contrib/distribute/ParameterServerStrategy
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Challenge: “Libraries”

• Different Frameworks
• Existing architectures
• Pretrained models



Lab 4: TensorFlow

10
7

eval \

  spark-submit \

  ${SPARK_OPTS} \

  --verbose \

  --conf 

spark.mesos.executor.docker.image=dcoslabs/dcos-jupyterlab:1.2.0-0.

33.7 \

  --py-files 

$(pwd)/TensorFlowOnSpark/examples/mnist/spark/mnist_dist.py \

  $(pwd)/TensorFlowOnSpark/examples/mnist/spark/mnist_spark.py \

  --cluster_size 5 \

  --images mnist/csv/train/images \

  --labels mnist/csv/train/labels \

  --format csv \

  --mode train \

  --model mnist/mnist_csv_model



Lab 4: TensorFlow

10
8

<VHOST>/jupyterlab-notebook/tensorboard



Further Reading/Watching

10
9

https://www.youtube.com/watch?v=tx6HyoUYGL0

https://www.youtube.com/watch?v=tx6HyoUYGL0


110

Challenge: Testing

• Training/Test/Validation 
Datasets

• Unit Tests?
• Different factors

– Accuracy
– Serving performance
– ….

• A/B Testing with live Data



111

Challenge: Debugging 

https://www.tensorflow.org/programmers_guide/debugger
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Challenge: Monitoring

• Understand {...}
• Debug
• Model Quality

– Accuracy
– Training Time
– …

• Overall Architecture
– Availability 
– Latencies
– ...

• TensorBoard

• Traditional Cluster Monitoring 
Tool



Lab 5: TensorBoard

11
3

To CSV mnist
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Profiling 

https://www.tensorflow.org/performance/performance_guide

• Crucial when using “expensive” 
devices

• Memory Access Pattern
• “Secret knowledge”
• More is not necessarily better....



Lab 6 (Optional): TFDebug

11
5

https://www.tensorflow.org/guide/debugger

https://www.tensorflow.org/guide/debugger
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Challenge: Resource and Service Management 

• Different Distributed Systems
– Deployment
– Updates
– Failure Recovery
– Scaling

• Resource Efficiency
– Multiple VM per Service?

Typical Datacenter
siloed, over-provisioned servers,

low utilization

Jupyter

Jenkins

HDFS

Spark

TensorFlow
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Apache Mesos

Two-level Scheduling

1. Agents advertise resources to Master
2. Master offers resources to Framework
3. Framework rejects / uses resources
4. Agent reports task status to Master

Mesos 
Master

Mesos 
Master

Mesos 
Master

Mesos AgentMesos Agent Service
Cassandra 
Executor

Cassandra 
Task

Flink 
Scheduler

Spark 
Executor

Spark
 Task

Mesos AgentMesos Agent Service
Docker 

Executor

Docker
 Task

CDB 
Executor

Spark
 Task

Spark 
Scheduler

Kafka 
Scheduler
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Example: GPU Isolation

(Unified) 
Mesos 

Containerizer

Containerizer API
Mesos Agent

Isolator API

CP
U

M
em

or
y

GP
U
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Example: GPU Isolation

(Unified) 
Mesos 

Containerizer

Containerizer API
Mesos Agent

Isolator API

CP
U

M
em

or
y

GP
U

Nvidia GPU Isolator

Linux devices cgroup

Nvidia 
GPU

Allocator

Nvidia 
Volume

Manager
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Example: GPU Isolation

(Unified) 
Mesos 

Containerizer

Containerizer API
Mesos Agent

Isolator API

CP
U

M
em

or
y

GP
U

Nvidia GPU Isolator

Linux devices cgroup

Nvidia 
GPU

Allocator

Nvidia 
Volume

Manager

Mimics functionality of 
nvidia-docker-plugin

Allocates GPUs to
tasks

Isolates Access to GPUs 
between tasks



Resource Management 

Typical Datacenter
siloed, over-provisioned servers,

low utilization

DC/OS
automated schedulers, workload multiplexing onto the same 

machines

Jupyter

Jenkins

Microservic
e

Spark

TensorFlow



Service Orchestration 

12
2

LOB 1 

Security & 
Compliance

Application-Aware 
Automation MultitenancyHybrid Cloud 

Management

Datacenter and Cloud as a Single Computing Resource 
Powered by Apache Mesos

LOB 2 



Resource Management 

Security & 
Compliance

Application-Aware 
Automation MultitenancyHybrid Cloud 

Management

Datacenter and Cloud as a Single Computing Resource 
Powered by Apache Mesos



Continuous Integration

Monitoring & Operations

Distributed Data 
Storage and 
Streaming 

Data Preparation 
and Analysis 

Storage of trained 
Models and 
Metadata

Use trained Model 
for Inference 

Distributed 
Training using  

Machine Learning  
Frameworks

Data & Streaming Model 
Engineering

Model 
Management Model ServingModel 

Training 

Resource and Service Management

TensorBoard

Model Library

Feature Catalogue 
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THANK YOU!

ANY 
QUESTIONS?

@dcos

users@dcos.io

/groups/8295652

/dcos
/dcos/examples
/dcos/demos

chat.dcos.io

https://mesosphere.com/resources/building-data-science-platform/

https://mesosphere.com/resources/building-data-science-platform/


CONFIDENTIAL

Make it insanely easy 
to build and scale

world-changing technology


