€Embedded Linux
Conference
Europe

OpenloTSummit

Europe

WiFi and Secure Socket Offload
in Zephyr™

Gil Pitney / Texas Instruments

gpitney@ti.com
THE
B st

Motivation

The Tl SimpleLink CC32xx family of MCUs provides an SoC and supporting
SDK which completely offloads the WiFi stack onto an integrated network

coprocessor (NWP).
o This provides significant memory, CPU, and energy savings.

o All secure communications, certificate/key storage, crypto and power management is handled
on the NWP.

o The SimpleLink SDK supports TI RTOS and FreeRTOS, but is designed to be portable.
Zephyr networking stack has support for WiFi via an offload tap (data plane),
and some wifi management events (control plane).

Zephyr has recently added TLS support into the BSD Socket API
o This meshes well with TI’'s SimpleLink design
The goal is to efficiently integrate the SimpleLink offloaded capabilities

into Zephyr, while leveraging Zephyr socket-based networking protocols.
o All work was done on the CC3220SF-LaunchXL development board.

TI CC3220SF SoC H/W Architecture
@ e, N

o)))) Internet

Serial Flash

Peripherals SPl and 12C

GPIO
UART 256-KB RAM /
1-MB Flash (CC3220SF)

PWM
ADC

Copyright @ 2017, Texas Instruments Incorporated

("8

Host Micro-Controller

Ti SimpleLink Components

=) (&) (&)

RTOS (FreeRTOS, TI RTOS)

Peripheral Control Library

=
Networking Engine R
Network Processor

(IPv4/vG, TCP, UDP, ARP, ICMP S & DHCP Clients...)

WLAN MAC & PHY

CC3200R System on Chip

Y

Tl SimpleLink CC32xx SDK Architecture & APls

Device API: Manages hardware-related functionality such
as start, stop, set, and get device configurations.

WLAN API: Manages WLAN, 802.11 protocol-related
functionality such as device mode (station, AP, or P2P),
provisioning method, connection profiles, and connection
policy.

BSD Socket API: with TLS handled under the BSD API.
NetApp API: Offloads networking services (HTTP, DHCP,
mDNS).

NetCfg API: Configures network parameters (MAC
address, acquiring IP address by DHCP, setting the static
IP address).

Serial Flash API: for networking or user proprietary data.

Sources: swru368, swru369c

http://www.ti.com/lit/swru368
http://www.ti.com/lit/swru369

Zephyr Network Stack (Previous State)

Plan has been to support

WiFi via offload chips.
o data via NET_OFFLOAD tap.
o No WiFi L2 Drivers
o No WiFi supplicant, or
provisioning support (yet).

Secure comms (SSL/TLS)
provided by mbedTLS library

Zephyr Network Protocols uPy modsocket PY
(WebSock, MQTT, LwWM2M/CoAP, DNS & Zephyr
HTTP, SNTP) samples
' {
net_app BSD sockets
(client/server/_TLS wrappers) (ZSOCk)
—
mbedTLS
library o
‘ ¥
net_mgmt net_context #ifdef CONFIG_NET_OFFLOAD
Zephyr Native IP Stack I RBAD e
(Core, IPv4/IPv6, ICMPV4/ICMPV6, UDP/TCP) : TCPI/EIrI?gﬁféload
Network Interface f (SoC Coprocessor or
L2 Interface ' WiFi chip)
Ethernet MAC BlueTooth
(NXP, Atme, 5T, | 802.15.4 MAC L2CAP
SLIP/TAP) (Tl, NXP,Nordic) (Nordic)

Options for TCP/IP Offload to the NWP (1/2)

Option 1: Use SimpleLink SDK APls:

e How:
o SDK already ported to Zephyr

© #include <SL SDK>/simplelink.h
0 #include <SL SDK>/sys/socket.h

e Pros:

o Zephyr apps get full access to
SimpleLink WLAN, NetApp, Socket
APls.

o Can still use Zephyr drivers: 12C, GPIO..

o Offers fullest H/W entitlement.

e Cons:

o No integration with Zephyr WiFi event
management.

o Will not leverage Zephyr’s
socket-based network protocols.

Option 2: Write an L2 Driver:

e How:
o Use SimpleLink Raw Sockets
m aka “Transceiver Mode”.
o Implement L2 send(), reserve() fxns.
o Push received data via net_pkt to
Zephyr IP core.
e Pros:

o Hooks deeply into the Zephyr IP Core.
o Enables Zephyr use cases like packet
routing across network interfaces.
e Cons:

o Does not fully leverage SimpleLink:
m network buffer allocation, management
m DHCP, DNS offloaded

m Secure socket offloading

Options for TCP/IP Offload to the NWP (2/2)

Option 3: Offload at net context():

e How:

o Enable CONFIG NET OFFLOAD
o Write a Zephyr WiFi driver (cntrl + data)

e Pros:
o TCP/IP stack is offloaded to the NWP.

o Enables Zephyr use cases like packet
routing across network interfaces.

e (Cons:

o Overheads:

m Mapping sync BSD socket APIs to
async net_context APIs and back.

m Received data copied into net_bufs
and queued.

m Driver thread to select sockets and
trigger callbacks
o Security: TLS handshake and crypto
are not offloaded

Option 4: Offload at BSD socket layer:

e How:
o Enable CONFIG NET SOCKETS OFFLOAD
o Write a Zephyr WiFi driver (cntrl only)
o Register offloaded socket fxns w/ Zephyr.

e Pros:

o Avoids overheads of option 3)

o Secure socket communications get fully
offloaded.

o DNS offloaded too (getaddrinfo ())
e Cons:

o Currently, only one socket provider in the
system

o No packet routing across net interfaces.

This Option Chosen for Tl SimpleLink

Zephyr Network Stack (New State)

Zephyr Network Protocols e TLS handled under socket APls
i (MQTT, LwM2M,...) ; e New offload tap at BSD socket layer
""""""""""""" L e WiFi offload drivers implement:
BSD sockets #ifdef CONFIG_NET_SOCKETS_OFFLOAD o iface_init: NWP init, defaults
& TLS setsockopt() WLAN & network params.
mbeiITLS T Sl o Control: scan(), [di.slconnect(),
library WiFi Driver / and callbacks to wifi_mgmt
_l Socket Provider o Data: net_context() or sockets.
e Protocols being migrated from
wifi_mgmt zsock net_app/net_context to BSD
el [T net_context #ifdef CONFIG_NET_OFFLOAD socket API.
- Zephyr Native IP Stack Atmel es-WiFi,
Winc1500 | Eoro266
> L2 Interface WiFi driver WiFi drivers |
Drivers (PRs)

Zephyr: Adding TLS to Socket APIs

o Why?
o TLSis hard to get right; many TLS library APIs and configuration options.
o Let’s make it easy to add TLS to non-secure socket-based networking apps/protocols.

e Adding TLS to a networking app via mbedTLS involves:

o Creation/initialization of mbedtls ssl, config contexts, registration of entropy generator.
o Setup certificates list.

o Configuration of the TLS/SSL layer.
m Set server/clilent mode
m Set certificate authentication mode
m Specify RNG and DBG functions
m Set network tx/rx functions via mbedtls ssl set bio()

o Socket creation (standard POSIX); then connection via mbedtls net connect ()
o Read/Write viambedtls ssl read()/mbedtls ssl write ()
o Teardown of mbedtls contexts.

e Zephyr wrapped all this with net_app, but we want to leverage standard APIs...

What’s involved in establishing a secure channel?

Store Certificates/keys: . 1. Client hello
[2. Server hello

e Certificates/private keys provisioned
into secure flash.
L Catalog Of known Trusted ROOt CA Verify Server Certificate

and Crypto Params

Mutual Authentication

3. Server Certificate

Certificates ‘ 4. Certificate request
“TLS Handshake”: connect() | 5. Client Certificate
° Clphel’ Su'te negot|at|on Verify client Certificate
. . i Session Key Exchange
e Authentication of the server and e R
secret
(optionally) the client . 6. Send Secret Key Info |
e Session key exchanged. (Encrypted with Server Public Key)
Calc Shared Session Key
Data Exchange: send()/recv() frompremesterseres. | -
] - 7. Client Finished >|
e Session key used to encrypt data on Calc Shared Sesslon Key
rom pre-master secret
this channel. 8. Server Finished

Data Exchange

_ Messages encrypted with the
: Shared Session Key =

www.it.com/lit/swpu332: Fig. 3

http://www.it.com/lit/swpu332

How to provision the certificates/keys to the device?

e The secrets should be kept secure from non-secure apps; eg,

o On Tl CC3220SF:

m NWP runs the TCP/IP stack and crypto in a separate CPU (address space) from the MCU (running
Zephyr). NWP has full access to the keys.

m MCU can write new secrets (eg: via OTA updates). Secrets are signed, encrypted and have R/W access
control levels.

o Onan ARMv8-M Device with Trusted Execution Environment:
m Secrets can be stored in a secure memory partition, accessed by secure code.

m (See talk by Andy Gross on Tuesday: “Zephyr and Trusted Execution Environments”)

e Storing secrets:
o Method 1: Write a separate provisioning app to store certs/keys into secure flash filesystem.
o Method 2: Use vendor production line tool to provision certs/keys to the device’s secure flash.

Method 1: Zephyr’s tls_credential_add() API

/* Ideally, a separate application to store certs/keys into a secure file system: */

#if defined (CONFIG_TLS CREDENTIALS)<—

#include <net/tls credentials.h>

#define CA CERTIFICATE TAG 1

/* GlobalSign Root CA - R2 for https://google.com */
static const unsigned char ca_certificate[]

#include "globalsign r2.der.inc"
i

/* Ideally, add credentials to secure flash:

APls enabled by a Kconfig variable.

Currently, credentials only saved in RAM,
and done as part of network app/protocol
initialization.

tls credential add(CA CERTIFICATE TAG, TLS CREDENTIAL CA CERTIFICATE,

ca certificate,

#endif

sizeof (ca certificate));

Method 2: Provisioning Certs/Keys on CC3220SF

s 11 UniFlash Tool:

e Enable Tl catalog of Trusted CA
Root Certificates
e Eg: Add google’s “GlobalSign

UniFlash

43 TeXAS INSTRUMENTS Development Mode - Files > Trusted Root-
Certificate Catalog

General - Cloud OTA

e i o R2” DER file to secure flash.
e £ At runtime:
e bind certificate’s filename via
o

its sec_tag_t to client socket
using setsockopt ()

Method 2: at init time, only need provide filenames

#include <net/tls credentials.h>

TBD: KConfig name may change before

#define CA CERTIFICATE TAG 1
SrIhe M - / Zephyr LTS

#1f defined (CONFIG_NET SOCKETS_ SECURE_OFFLOAD)
/* GlobalSign Root CA - R2 for https://google.com */

static const unsigned char ca certificate[] = “globalsign r2.der”
#else

/* Use Method 1: encoding full certificate: */

#endif

/* For method 2: Only the certificate’s filename is associated with the tag: */
tls credential add(CA_CERTIFICATE TAG, TLS CREDENTIAL CA CERTIFICATE,
ca_certificate, sizeof (ca certificate));

So, now we have this “certificate tag” associated with a certificate or key, how to use it?

http_get: Retrieve google web page over https (1/2)

#include <net/socket.h>
#if defined(CONFIG_TLS_CREDENTIALS)

#include <net/tls credentials.h>
#define HTTP_PORT "443"

#else

For HTTPS, using port 443

#define HTTP PORT "80"
#endif N

#define HTTP HOST “google.com”
#define REQUEST "GET / HTTP/1.0\r\nHost: " HTTP H@ST "\r\n\r\n"

main () {
static char response[1024];
static struct addrinfo hints;

struct addrinfo *res;

int sock;

hints.ai family = AF INET;
hints.ai socktype = SOCK STREAM;
getaddrinfo (HTTP_HOST, HTTP_PORT, &hints, é&res);

|dea: Encapsulate TLS under POSIX Socket API (2/2)

#if defined (CONFIG_TLS_ CREDENTIALS) TLS protocol family
sock = socket(res->ai family, res->ai socktype, IPPROTO TLS 1 2);

sec_tag t sec_tag opt[] = {
CA_CERTIFICATE_TAG, Certificate bound to socket via tag

I
setsockopt (sock, SOL_TLS, TLS_ SEC_TAG_LIST, sec_tag opt, sizeof (sec_tag _opt));
setsockopt (sock, SOL_TLS, TLS HOSTNAME, HTTP HOST, sizeof (HTTP_ HOST));
#else
sock = socket(res->ai family, res->ai socktype, res->ai protocol);
#endif

/* Rest of network app/protocol code remains unchanged: */ connecﬂ)runuﬂesthe'TLS
connect (sock, res->ai addr, res->ai addrlen); — handshake

send (sock, REQUEST, sizeof (REQUEST)-1, 0);
send()/recv() now done

do {
len = recv(sock, response, sizeof (response) - 1, O);‘// over secure channel
responsel[len] = 0; printf("%s", response);

} TLS Security added with a few lines of setsockopt() code.

close (sock) ;

With Tl SimpleLink, all secure comms offloaded.

Summary

The Tl SimpleLink CC3220SF SoC allows the TCP/IP stack, WiFi, secure
communications, encryption, secrets storage and power management to be
offloaded from the MCU (Zephyr) to an integrated network coprocessor (NWP).

How?

The SimpleLink NWP “host driver” is ported to Zephyr via a thin OSAL.

The SimpleLink Zephyr WiFi driver implements the WiFi control API, and sends
[dis]connect/scan notifications back to the network event manager.

Certificates are provisioned to CC3220SF secure flash via Tl UniFlash tool.
The SimpleLink Zephyr WiFi driver registers it BSD socket APIs to the new
Zephyr socket layer, and

with the help of Zephyr’'s new TLS socket APIs, we can achieve full secure
socket offload, available to Zephyr’s socket-based net protocols.

Thank You!

THE
I LINUX
FOUNDATION

