Why the Yocto Project for my IoT Project?

Deploy Software Updates for Linux Devices

Drew Moseley Technical Solutions Architect Mender.io

Session overview

- Motivation
- Challenges for Embedded, Linux and IoT developers
- Describe IoT workflow
- Overview of Yocto
- Benefits of Linux and Yocto for IoT

about.me

Drew Moseley

- 10 years in Embedded Linux/Yocto development.
- Longer than that in general Embedded Software.
- Project Lead and Solutions Architect.

<u>drew.moseley@mender.io</u> <u>https://twitter.com/drewmoseley</u> <u>https://www.linkedin.com/in/drewmoseley/</u> <u>https://twitter.com/mender_io</u>

Mender.io

- Over-the-air updater for Embedded Linux
- Open source (Apache License, v2)
- Dual A/B rootfs layout (client)
- Remote deployment management (server)
- Under active development

Mender over-the-air software updater client. https://mender.io

884 commits	🛿 9 branches	🖏 16 releases	13 contributors	कु Apache-2.0	
Branch: master - New pull requi	est		T	Find file Clone or download -	
		Late	st commit 26ad27c 14 hours ago		

Embedded Projects increasingly use Linux:

- <u>AspenCore/Linux.com¹</u>: Embedded Linux top 2 in current and planned use.
- Huge IoT market opportunity:
- <u>Forbes²: \$267B by 2020</u>
- Linux is a big player in IoT
 - Nodes & Gateways³ 17.18 Billion units by 2023
 - Inexpensive prototyping hardware Raspberry Pi, Beaglebone, etc
 - Readily available production hardware Toradex, Variscite, Boundary Devices
 - Wide selection of chipsets NXP, TI, Microchip, Nvidia
 - ¹ <u>https://www.linux.com/news/event/elce/2017/linux-and-open-source-move-embedded-says-survey</u>

² <u>https://www.forbes.com/sites/louiscolumbus/2017/01/29/internet-of-things-market-to-reach-267b-by-2020</u>

³ <u>http://www.marketsandmarkets.com/PressReleases/iot-gateway.asp</u>

Challenges for Embedded Linux/IoT Developers

Hardware variety

Storage Media

Software may be maintained in forks

Cross development

Initial device provisioning

1. Buy Hardware¹

Buy Hardware¹
Connect Hardware

- 1. Buy Hardware¹
- 2. Connect Hardware
- 3. Install OS
 - a. Binary distribution
 - b. Distribution build tools
 - c. Build system

¹https://makezine.com/comparison/boards/

- 1. Buy Hardware¹
- 2. Connect Hardware
- 3. Install OS
 - a. Binary distribution
 - b. Distribution build tools
 - c. Build system
- 4. Develop Application
- 5. Test Application

- 1. Buy Hardware¹
- 2. Connect Hardware
- 3. Install OS
 - a. Binary distribution
 - b. Distribution build tools
 - c. Build system
- 4. Develop Application
- 5. Test Application
- 6. Test System

¹https://makezine.com/comparison/boards/

- 1. Buy Hardware¹
- 2. Connect Hardware
- 3. Install OS
 - a. Binary distribution
 - b. Distribution build tools
 - c. Build system
- 4. Develop Application
- 5. Test Application
- 6. Test System
- 7. Deploy

- _ls_
- Mechanism to specify and build
 - Define hardware/BSP components
 - Integrate user-space applications; including custom code
- Need reproducibility
- Must support multiple developers
- Allow for parallel processing
- (Cross) Toolchains
- License Management

Is Not

- An IDE
- A Distribution
- A deployment and provisioning tool
- An out-of-the-box solution

Yocto Project - Overview

"It's not an embedded Linux distribution -- it creates a custom one for you"¹

- Recipes, metadata, dependencies and configuration
- Primary output: package feed
- Secondary output: boot images
- Builds all components from source
- Mechanism, not policy

Products:

- Root filesystem image
- Kernel, Bootloader, Toolchain
- Package Feed

¹See more at https://www.yoctoproject.org

Yocto Project - Details

Organized into independent layers:

- Separation of functionality
- Allows different release schedules
- Expandability
 - Recipes developed in python and bash

SDK mechanism

- Separation of system and application devs
- Easily allows multiple developers to contribute

Optimizations:

- Faster build time reusing prebuilt binaries
- Parallel builds

Previous ELC talk estimated ~ 8400 software packages

Yocto Project - Getting Started

\$ git clone -b rocko \setminus	
git://git.yoctoproject.or	rg/poky.git
<pre>\$ source poky/oe-init-build-e</pre>	QEMU - Press Ctrl-Alt to exit grab _ 🗖 🗙
\$ MACHINE=qemux86 bitbake \	INIT: version 2.88 booting
core-image-minimal	Flease Walt: booting Starting udev [6.865796] udevd[117]: starting version 3.2.2
\$ runqemu qemux86	<pre>[7.075781] udevd[118]: starting eudev-3.2.2 [8.745557] uvesafb: [8.746458] SeaBIOS Developers, [8.748650] SeaBIOS VBE Adapter, [8.748761] Rev. 1, [8.748766] OEM: SeaBIOS VBE(C) 2011, [8.749091] VBE v3.0 [8.908858] uvesafb: no monitor limits have been set, default refresh rate wi 11 be used [8.912140] uvesafb: scrolling: redraw [9.0488181 Console: switching to colour frame buffer device 80x30 [9.058013] uvesafb: framebuffer at 0xfd000000, mapped to 0xd0c00000, using 1 6384k, total 16384k [9.0586271 fb0: VESA VGA frame buffer device [9.121454] EXT4-fs (vda): re-mounted. Opts: data=ordered INIT: Entering runlevel: 5 Configuring network interfaces ip: RTNETLINK answers: File exists Starting syslogd/klogd: done</pre>
	Poky (Yocto Project Reference Distro) 2.4.2 qemux86 /dev/tty1
	qemux86 login∶ Poky (Yocto Project Reference Distro) 2.4.2 qemux86 /dev/tty1
	gemux86 login:

Why Linux for Embedded (1/2)?

• Ubiquity of:

- Available Software
- Expertise
- Training Materials
- Broad device support

- Support for most common SOCs and reference boards
- Common system architecture on host and target
- Open Source

Why Linux for Embedded (2/2)?

• Industry Support

- Semiconductor manufacturers
- Industry groups (Genivi, AGL, etc)
- High performance/low power
- Connectivity options

- Good cross-development support
 - Toolchains, including debug support
 - Serial consoles
 - JTAG

Why Yocto for IoT (1/2)?

- Strong support from major board and semiconductor vendors.
- Well defined workflow.
- Supports large developer teams.
- Easy access to IoT-specific protocols.
- Good connectivity and coexistence with RTOSes used in sensors and actuators.
- CVE updates in upstream stable branches.

Why Yocto for IoT (2/2)?

• IOT-Specific protocols well supported:

- MQTT(python-paho-mqtt)
- AMQP(rabbitmq)
- CoAP(libcoap/python3-aiocoap)
- ZeroMQ(zeromq)
- GPS (gpsd)
- Bluetooth(bluez5)

• Networking

- systemd-networking
- o connman
- NetworkManager
- Developer frameworks:
 - Python (meta-python layer)
 - NodeJS (meta-nodejs layer)

Yocto IoT Layers

iot				Filter layers -
Layer name	Description	Туре	Repository	
meta-vesta	Rigado BSP for the Vesta IoT Gateways	Machine (BSP)	https://git.rigado.com/vesta/meta-vesta.git	
meta-refkit	IoT Reference OS Kit for Intel(r) Architecture distro layer	Distribution	https://github.com/intel/intel-iot-refkit	
meta-flatpak	Flatpak support layer	Miscellaneous	https://github.com/intel/intel-iot-refkit	
meta-refkit- computervision	IoT Reference OS Kit for Intel(r) Architecture profile for computer vision use cases	Miscellaneous	https://github.com/intel/intel-iot-refkit	
meta-refkit-core	Core layer for the IoT Reference OS Kit for Intel(r) Architecture	Miscellaneous	https://github.com/intel/intel-iot-refkit	
meta-refkit-extra	IoT Reference OS Kit for Intel(r) Architecture demo layer	Miscellaneous	https://github.com/intel/intel-iot-refkit	
meta-refkit-industrial	IoT Reference OS Kit for Intel(r) Architecture profile for industrial use cases	Miscellaneous	https://github.com/intel/intel-iot-refkit	
meta-intel-iot- middleware	Shared middleware recipes for Intel IoT platforms	Software	git://git.yoctoproject.org/meta-intel-iot-middlew	are
meta-iot-cloud	OpenEmbedded layer to add support for multiple cloud service provider solutions.	Software	https://github.com/intel-iot-devkit/meta-iot-clou	ıd.git
meta-iot-web	IoT web components	Software	https://github.com/intel/iot-web-layers	
meta-oic	Support for building the Open Interconnect Consortium lotivity framework	Software	git://git.yoctoproject.org/meta-oic	
meta-security- framework	adds higher-level security middleware and tools	Software	https://github.com/01org/meta-intel-iot-security	/.git
meta-security-smack	adds the Smack LSM to OpenEmbedded distros	Software	https://github.com/01org/meta-intel-iot-security	/.git

1

Source: https://layers.openembedded.org/layerindex/branch/master/layers/

Yocto Project for IoT; in summary

Pros:

- Widely supported by board and semiconductor vendors
- Active developer community
- Wide functionality and board support enabled by layer mechanism
- Customizable and expandable
- Minimal native tooling required
- Predictability of software contents

Cons:

- Steep learning curve
- Unfamiliar environment to non-embedded developers
- Resource-intensive
 - Long initial build times
 - Disk space

Q&A - Thank you!

Resources:

- <u>https://bit.ly/2GIKIUQ</u> Previous ELC Talk comparing Embedded Linux build systems
- <u>https://ubm.io/2lazdfn</u> Deeper dive into the Yocto project
- <u>https://hub.mender.io/t/raspberry-pi-3-model-b-b/57</u> Building Yocto for Raspberry Pi with Mender.

@drewmoseley

drew.moseley@mender.io