
© 2018 Synopsys, Inc. 1

Alexey Brodkin
Embedded Linux Conference Europe 2018,

Edinburgh, Scotland, UK

U-Boot – Bootloader for IoT Platform?

© 2018 Synopsys, Inc. 2

Agenda

U-Boot for IoT device

Shrinking memory footprint

Execution from ROM

Run-time issues

© 2018 Synopsys, Inc. 3

Alexey Brodkin

• Maintainer of ARC architecture in U-Boot

• Contributor to:

– Linux kernel

– Buildroot

– OpenEmbedded

– OpenWrt

– uClibc etc

Engineering manager at Synopsys

© 2018 Synopsys, Inc. 4

Previous ARC boards with U-Boot

AXS103

• Dual-core ARC HS38 @ 100 MHz

in FPGA

• BootROM

• 2 GiB of DDR

HSDK

• Quad-core ARC HS38 @ 1 GHz

in silicon

• BootROM

• 4 GiB of DDR

Single-board computers with Linux

© 2018 Synopsys, Inc. 5

New board – new fun
Meet IoT development kit

• ARC EM9D @ 150 MHz

• Memories:

– eFlash 256 KiB @ 0x0000_0000

– ICCM 256 KiB @ 0x2000_0000

– SRAM 128 KiB @ 0x3000_0000

– DCCM 128 KiB @ 0x8000_0000

– SPI flash 2 MiB

• Peripherals:*

– SD-card (DW MobileStorage)

– USB OTG (DW USB OTG)

– Serial port (DW APB UART)

* There’re much more peripherals on the board but those make no sense

for a bootloader

© 2018 Synopsys, Inc. 6

Why U-Boot

• Mature and well-known bootloader

• Supports:

– 12 CPU architectures

– Lots of peripherals: UART, SPI, I2C, Ethernet,

SD, USB …

– File-systems: Fat, Ext, Yaffs2, Btrfs, ubifs …

– Networking protocols: TFTP, NFS, DHCP

• “Device-tree” used for drivers initialization

• Allows for flexible scripting in “hush” shell

• Allows re-use of its stdio and C run-time libs

by user applications

$ git show --stat --pretty=oneline 5396e8b

5396e8b arc: Add support for IoT development kit

arch/arc/Kconfig | 5 ++++

arch/arc/dts/Makefile | 1 +

arch/arc/dts/iot_devkit.dts | 45 ++++++++++++++++++++++

board/synopsys/iot_devkit/Kconfig | 12 ++++++++

board/synopsys/iot_devkit/MAINTAINERS | 5 ++++

board/synopsys/iot_devkit/Makefile | 7 +++++

board/synopsys/iot_devkit/config.mk | 2 ++

board/synopsys/iot_devkit/iot_devkit.c | 168 ++++++++++++++++++++++

board/synopsys/iot_devkit/u-boot.lds | 77 ++++++++++++++++++++++

configs/iot_devkit_defconfig | 38 ++++++++++++++++++++++

include/configs/iot_devkit.h | 84 ++++++++++++++++++++++

11 files changed, 444 insertions(+)

Add support of a new board in a blink of an eye

© 2018 Synopsys, Inc. 7

Starting point: 422 KiB total

• DW USB OTG & DW MMC drivers

• Read/write FAT file-system

• Built-in .dtb

CONFIG_ARC=y

CONFIG_ISA_ARCV2=y

CONFIG_CPU_ARCEM6=y

CONFIG_TARGET_IOT_DEVKIT=y

CONFIG_CMD_MMC=y

CONFIG_CMD_USB=y

CONFIG_CMD_FAT=y

CONFIG_OF_CONTROL=y

CONFIG_OF_EMBED=y

CONFIG_ENV_IS_IN_FAT=y

CONFIG_ENV_FAT_INTERFACE="mmc"

CONFIG_ENV_FAT_DEVICE_AND_PART="0:1"

CONFIG_DM=y

CONFIG_MMC=y

CONFIG_MMC_DW=y

CONFIG_DM_SERIAL=y

CONFIG_SYS_NS16550=y

CONFIG_USB=y

CONFIG_DM_USB=y

CONFIG_USB_DWC2=y

CONFIG_USB_STORAGE=y

$ size u-boot
text data bss dec hex filename

257129 9372 155928 422429 6721d u-boot

© 2018 Synopsys, Inc. 8

Shrinking memory footprint

We only have 256 KiB of ROM and 128 KiB of RAM

© 2018 Synopsys, Inc. 9

Disable useless options: 366 KiB total

• No plans to load OS

• No plans to use flash (as of now)

• There’s no Ethernet controller

• No memory to load application from Elf

– Load Elf

– Copy sections from Elf to RAM

• No need to load via serial port

CONFIG_CMD_BOOTD is not set

CONFIG_CMD_BOOTM is not set

CONFIG_CMD_ELF is not set

CONFIG_CMD_XIMG is not set

CONFIG_CMD_FLASH is not set

CONFIG_CMD_LOADB is not set

CONFIG_CMD_LOADS is not set

CONFIG_NET is not set

As simple as deselecting items in menuconfig

$ size u-boot
text data bss dec hex filename

216009 7544 142468 366021 595c5 u-boot

© 2018 Synopsys, Inc. 10

Get rid of dead code: 311 KiB total

• Put all functions, global & static variables in

their own sections and strip unused on final

linkage.

• Should be enabled by default for all

architectures and boards in U-Boot except

toolchain doesn’t support it.

• Was not the case for ARC – fixed now
fac4790491f6 (“arc: Eliminate unused code and
data with GCC's garbage collector”)

CPPFLAGS += -ffunction-sections -fdata-sections

LDFLAGS += --gc-sections

Might require changes in sources

$ size u-boot
text data bss dec hex filename

163532 6948 140928 311408 4c070 u-boot

http://git.denx.de/?p=u-boot.git;a=commit;h=fac4790491f6

© 2018 Synopsys, Inc. 11

Shrink statically allocated buffers: 188 KiB total

• tmpbuf_cluster &

get_contents_vfatname_block of

65 KiB each!

• CONFIG_FS_FAT_MAX_CLUSTSIZE=4096

• Save 120 KiB of memory!

$ nm --size-sort --reverse-sort u-boot | head -n 5

00010000 b tmpbuf_cluster

00010000 B get_contents_vfatname_block

00001414 b hist_lines

00000a96 t do_fdt

00000812 t set_contents

#define MAX_CLUSTSIZE CONFIG_FS_FAT_MAX_CLUSTSIZE

static __u8 tmpbuf_cluster[MAX_CLUSTSIZE]
__aligned(ARCH_DMA_MINALIGN);

__u8 get_contents_vfatname_block[MAX_CLUSTSIZE]

$ size u-boot
text data bss dec hex filename

163532 6948 18048 188528 2e070 u-boot

© 2018 Synopsys, Inc. 12

Compile-time optimizations summary: /2 size

• Analyze

– Main contributors were huge statically allocated buffers

– Primary tools:

– bloat-o-meter (https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/bloat-o-meter)

– size

– nm

• Be practical

– Unused options might add to memory usage significantly (56 KiB in our case)

• Use advanced features of the toolchain

– 5% size reduction due to dead code elimination

– Link Time Optimization (LTO) might help a bit more

Memory foot-print reduced from 422 to 188 KiB (saved 234 KiB)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/bloat-o-meter

© 2018 Synopsys, Inc. 13

Execution from ROM

Relocation & memory partitioning

© 2018 Synopsys, Inc. 14

[Self-] relocation

• Why relocation?

– RAM is much larger

– DDR might require initialization before use

– We’ll need RAM anyways so why not?

• 2 major stages:

– Pre-relocation (common/board_f.c)

Execute code from ROM/flash with limited

RAM options:

– On-chip SRAM

– Locked D$ lines (x86)

– DDR (sometimes)

– After-relocation (common/board_r.c)

Executing from RAM (usually DDR)

Fundamental feature of U-Boot

Payloadu-boot.bin u-boot.bin

ROM RAM

Before After relocation

Stack, heap, ENV etc

© 2018 Synopsys, Inc. 15

Don’t relocate*

• Only supported for ARC as of today

• Add support for your architecture:
264d298fda39 (“arc: Introduce a possibility to
not relocate U-boot”)

• In platform/board code signal your intention

• Keep executing code from ROM/flash

• Use RAM only for data

– Heap

– Stack

– .data

– Environment

– Payload

What if RAM size < ROM size = u-boot.bin

u-boot.bin

ROM RAM

http://git.denx.de/?p=u-boot.git;a=commit;h=264d298fda39

© 2018 Synopsys, Inc. 16

Memory partitioning
Standard U-Boot CONFIG_xxx constants

ROM

RAM Stack .data Heap ENV

CONFIG_ENV_SIZECONFIG_SYS_MALLOC_LENCONFIG_SYS_SDRAM_BASE

CONFIG_SYS_INIT_SP_ADDR

.bss

.data.ivt, .text, .rodata

CONFIG_SYS_TEXT_BASE

CONFIG_SYS_SDRAM_SIZE

© 2018 Synopsys, Inc. 17

Definition of derived constants

#define CONFIG_SYS_MONITOR_BASE CONFIG_SYS_TEXT_BASE

#define SRAM_BASE 0x30000000

#define SRAM_SIZE SZ_128K

#define DCCM_BASE 0x80000000

#define DCCM_SIZE SZ_128K

#define CONFIG_SYS_SDRAM_BASE DCCM_BASE

#define CONFIG_SYS_SDRAM_SIZE DCCM_SIZE

#define CONFIG_SYS_INIT_SP_ADDR (CONFIG_SYS_SDRAM_BASE + SZ_32K)

#define CONFIG_SYS_MALLOC_LEN SZ_64K

#define CONFIG_SYS_BOOTM_LEN SZ_128K

#define CONFIG_SYS_LOAD_ADDR SRAM_BASE

#define ROM_BASE CONFIG_SYS_MONITOR_BASE

#define ROM_SIZE SZ_256K

#define RAM_DATA_BASE CONFIG_SYS_INIT_SP_ADDR

#define RAM_DATA_SIZE CONFIG_SYS_SDRAM_SIZE - \

(CONFIG_SYS_INIT_SP_ADDR - \

CONFIG_SYS_SDRAM_BASE) - \

CONFIG_SYS_MALLOC_LEN - \

CONFIG_ENV_SIZE

MEMORY {

ROM : ORIGIN = ROM_BASE, LENGTH = ROM_SIZE

RAM : ORIGIN = RAM_DATA_BASE, LENGTH = RAM_DATA_SIZE

}

SECTIONS

{

. = CONFIG_SYS_MONITOR_BASE;

.ivt : { *(.ivt); } > ROM

.text : { *(.text*); } > ROM

.rodata : { *(.rodata*); } > ROM

__rom_end = .;

.data : {

__ram_start = .;

(.data)

__ram_end = .;

} > RAM AT > ROM

.bss : {

__bss_start = .;

(.bss)

__bss_end = .;

} > RAM

}

configs/iot_devkit.h

https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html#Output-Section-LMA

board/synopsys/iot_devkit/u-boot.lds

https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html#Output-Section-LMA

© 2018 Synopsys, Inc. 18

Memory partitioning
Derived constants

ROM

RAM Stack .data Heap ENV

__ram_start

.bss

.data.ivt, .text, .rodata

RAM_DATA_SIZE

__rom_end

__ram_end

__bss_end

ROM_BASE

ROM_SIZE

__bss_start

RAM_DATA_BASE

© 2018 Synopsys, Inc. 19

Required quirks

• Signal intention to skip relocation

– Set GD_FLG_SKIP_RELOC flag

• Copy .data section from ROM to RAM

• Zero .bss as usual in clear_bss()

/* 1. Don't relocate U-Boot */

gd->flags |= GD_FLG_SKIP_RELOC;

/* 2. Copy data from ROM to RAM */

u8 *src = __rom_end;

u8 *dst = __ram_start;

while (dst < __ram_end)

*dst++ = *src++;

/* 3. Zero .bss as usual in clear_bss() */

size_t len = (size_t)&__bss_end - (size_t)&__bss_start;

memset((void *) &__bss_start , 0x00, len);

They are not too many

© 2018 Synopsys, Inc. 20

Run-time issues

© 2018 Synopsys, Inc. 21

-ENOMEM

• Problem

– Driver attempts to allocate 64 KiB buffer

• Fix

– 42637fdae833 (“usb: dwc2: Allow selection of data

buffer size”)

– Set CONFIG_USB_DWC2_BUFFER_SIZE = 16

(instead of default 64)

• Hint

– Check malloc() return value early!

Even though we boot to command prompt “usb start” fails

starting USB...

USB0: probe failed, error -12

USB error: all controllers failed lowlevel init

[14] malloc(bytes = 66328) = dlmalloc.c!1241

[13] memalign()+0x78 = dlmalloc.c!1922

[12] alloc_priv()+0x1a = device.c!269

[11] device_probe()+0x9c = device.c!325+0x6

[10] usb_init()+0xa2 = usb-uclass.c!276

[9] do_usb_start()+0xc = usb.c!586+0x4

[8] do_usb()+0x4e = usb.c!657

[7] cmd_call()+0xc = command.c!499+0xc

[6] cli_simple_run_command()+0x94 = cli_simple.c!249

[5] cli_simple_loop()+0x36 = cli_simple.c!299+0xa

[4] main_loop()+0x30 = main.c!66

[3] run_main_loop()+0x6 = board_r.c!645+0x4

[2] initcall_run_list()+0x2a = initcall.c!31

[1] board_init_r()+0x18 = board_r.c!877

[0] pc 0x200004a2, sp 0x80007b40, ()

http://git.denx.de/?p=u-boot.git;a=commit;h=42637fdae833

© 2018 Synopsys, Inc. 22

Stack overflow

• Problem

– Instead of 78 bytes for struct legacy_mbr we

allocate 78 * 512 (“blksz”) = 40KiB on stack

• Fix

– 8639e34d2c5e (“part: Allocate only one legacy_mbr

buffer”)

• Hints

–ALLOC_ALIGN_BUFFER(),

ALLOC_CACHE_ALIGN_BUFFER() allocate buffers

on stack

– Use Memory Protection Unit (MPU) if possible

– Locate stack right after non-existing memory or at

least read-only region to get early exception

Compared to malloc we don’t control stack size

IoTDK# usb start

starting USB...

USB0: scanning bus 0 for devices...

[20] part_test_dos() = part_dos.c!90

[19] part_init()+0x30 = part.c!241

[18] usb_stor_probe_device()+0xfc = usb_storage.c!280

[17] device_probe()+0x84 = device.c!416

[16] usb_scan_device()+0x154 = usb-uclass.c!658

[15] usb_hub_port_connect_change()+0x10a = usb_hub.c!422

[14] usb_scan_port()+0x19a = usb_hub.c!505

[13] device_probe()+0x12c = device.c!423

[12] usb_scan_device()+0x154 = usb-uclass.c!658

[11] usb_scan_bus()+0x2a = usb-uclass.c!216

[10] usb_init()+0xf8 = usb-uclass.c!294

[9] do_usb_start()+0xc = usb.c!586+0x4

[8] do_usb()+0x4e = usb.c!657

[7] usb_stor_probe_device()+0x2560 = command.c!499+0xc

[6] usb_stor_probe_device()+0xb34 = cli_simple.c!249

[5] usb_stor_probe_device()+0xba6 = cli_simple.c!299+0xa

[4] main_loop()+0x30 = main.c!66

[3] main_loop()+0x6ba = board_r.c!645+0x4

[2] initcall_run_list()+0x2a = initcall.c!31

[1] main_loop()+0x7c4 = board_r.c!877

http://git.denx.de/?p=u-boot.git;a=commit;h=8639e34d2c5e

© 2018 Synopsys, Inc. 23

Conclusions

• 200 KiB of ROM and 128 KiB of RAM is enough for full-scale U-Boot

– USB and MMC drivers

– FAT file-system with write support

• With tools, trials & errors it’s possible to shrink memory footprint a lot

– With vary basic tools it’s possible to identify large statically-allocated objects

– Allocations happen in run-time as well

– Fixes and improvements to generic code might be required

• Special measures required to skip relocation

– Requires architecture-specific changes in generic code

• Run-time issues are mostly bound to:

– Attempts to allocate more memory than available

– Stack overflows might be tricky to identify especially

– If there’s memory before stack

– If memory subsystem doesn’t signal wrong access (missing or read-only memory)

U-Boot could be ported on very memory-constrained system

Thank You

