SYNOPSYs

Silicon to Software’

U-Boot — Bootloader for IoT Platform?

Alexey Brodkin

Embedded Linux Conference Europe 2018,
Edinburgh, Scotland, UK

© 2018 Synopsys, Inc. 2

U-Boot for IoT device

Shrinking memory footprint
Execution from ROM

Run-time issues

SYNOPSYS'

Alexey Brodkin

Engineering manager at Synopsys

« Maintainer of ARC architecture in U-Boot
 Contributor to:

—Linux kernel

— Buildroot

— OpenEmbedded

—OpenWrt

—uClibc etc

© 2018 Synopsys, Inc. 3 S‘/"UPS‘/SG

Previous ARC boards with U-Boot

Single-board computers with Linux

AXS103 HSDK

* Dual-core ARC HS38 @ 100 MHz * Quad-core ARC HS38 @ 1 GHz
In FPGA In silicon

* BootROM BootROM

« 2 GIB of DDR « 4 GiB of DDR

SYNOPSYS'

© 2018 Synopsys, Inc. 4

New board — new fun

Meet |oT development kit

* ARC EM9D @ 150 MHz

 Memories:
—eFlash
—|CCM
- SRAM
—DCCM
— SPI flash

 Peripherals:*

256 KiB @ 0x0000_0000
256 KiB @ 0x2000_0000
128 KiB @ 0x3000_0000
128 KiB @ 0x8000_0000
2 MiB

— SD-card (DW MobileStorage)
—USB OTG (DW USB OTG)
— Serial port (DW APB UART)

* There’re much more peripherals on the board but those make no sense

for a bootloader

© 2018 Synopsys, Inc. 5

Micro-5D
card slot

2MB
koot flash

2 MB
app flash

ARC loT Development Kit

9D sensor BTLE

! !

ARC loT SoC

128 KB

Data Fusion Subsystem SRAM
with ARC EMID processor

256 KB

Peripherals
(USB, SDIO, 13C, 12C, SPI, 125, RTC)

! !

USB-OTG JTAG/UART

«—» Arduino/PMOD/
mikroBUS

SOI0, UART, SPI, I2C,
IS, 13C, ADC, FWM

SYNOPSYS'

Why U-Boot

Add support of a new board in a blink of an eye

 Mature and well-known bootloader
e Supports:
— 12 CPU architectures

— Lots of peripherals: UART, SPI, 12C, Ethernet,
SD, USB ...

— File-systems: Fat, Ext, Yaffs2, Btrfs, ubifs ...
— Networking protocols: TFTP, NFS, DHCP

 “Device-tree” used for drivers initialization
* Allows for flexible scripting in “hush” shell

* Allows re-use of its stdio and C run-time libs
by user applications

© 2018 Synopsys, Inc. 6

$ git show --stat --pretty=oneline 5396e8b
5396e8b arc: Add support for IoT development kit

arch/arc/Kconfig | 5 444+
arch/arc/dts/Makefile | 1+
arch/arc/dts/iot_devkit.dts | 45+ttt bbb bbb

board/synopsys/iot devkit/Kconfig 12 ++++++++

|
board/synopsys/iot devkit/MAINTAINERS | 5 ++++
|

board/synopsys/iot devkit/Makefile 7 +++++
board/synopsys/iot devkit/config.mk | 2 ++

board/synopsys/iot devkit/iot devkit.c | 168 ++++++++++++++++++++++
board/synopsys/iot devkit/u-boot.lds | 77 ++++++++++HHHHH
configs/iot_devkit defconfig | 38 ++++++++ttt bt

include/configs/iot_devkit.h | 84 ++++++++++ttttHttt

11 files changed, 444 insertions(+)

SYNOPSYS'

Starting point: 422 KiB total

CONFIG ARC=y
CONFIG ISA ARCV2=y

 DW USB OTG & DW MMC drivers CONFIG CPU ARCEM6=y

» Read/write FAT file-system CONFIG_TARGET IOT DEVKIT=y
CONFIG_CMD MMC=y

e Built-in .dtb CONFIG CMD USB=y
CONFIG CMD FAT=y
CONFIG OF CONTROL=y
CONFIG OF EMBED=y
CONFIG ENV IS IN FAT=y
CONFIG ENV FAT INTERFACE="mmc"
CONFIG ENV FAT DEVICE AND PART="0:1"
CONFIG DM=y
CONFIG MMC=y
CONFIG MMC DW=y
CONFIG DM SERTAL=y
CONFIG SYS NS16550=y
CONFIG USB=y
CONFIG DM USB=y

$ size u-boot CONFIG_USB_DWC2=y
text data bss dec hex filename -

257129 9372 155928 422429 6721d u-boot CONFIG_USB_STORAGE=y

© 2018 Synopsys, Inc. 7 SV"UPS‘/SG

Shrinking memory footprint

We only have 256 KiB of ROM and 128 KiB of RAM

© 2018 Synopsys, Inc. 8 S‘/"UPS‘/SQ

Disable useless options: 366 KiB total

As simple as deselecting items in menuconfrig

* No plans to load OS
* No plans to use flash (as of now)
* There’'s no Ethernet controller

* No memory to load application from EIf

—Load EIf
— Copy sections from EIf to RAM

* No need to load via serial port

$ size u-boot

text
216009

© 2018 Synopsys, Inc.

9

data bss dec
7544 142468 366021

hex filename
595c5 u-boot

HOH OH OB OH O H OB R

CONFIG _CMD BOOTD is not set
CONFIG _CMD BOOTM is not set
CONFIG CMD ELF is not set
CONFIG _CMD XIMG is not set
CONFIG CMD FLASH is not set
CONFIG _CMD LOADB is not set
CONFIG CMD LOADS is not set
CONFIG NET is not set

SYNOPSYS'

Get rid of dead code: 311 KiB total

Might require changes in sources

 Put all functions, global & static variables in | | |
. . ;] CPPFLAGS += -ffunction-sections -fdata-sections
their own sections and strip unused on final LDFLAGS 4= --gc-sections
linkage.

» Should be enabled by default for all
architectures and boards in U-Boot except
toolchain doesn’t support it.

* Was not the case for ARC — fixed now

fac4790491f6 (“arc: Eliminate unused code and
data with GCC's garbage collector”)

$ size u-boot

text data bss dec hex filename
163532 6948 140928 311408 4c070 u-boot

© 2018 Synopsys, Inc. 10 S‘/"UPS‘/SG

http://git.denx.de/?p=u-boot.git;a=commit;h=fac4790491f6

Shrink statically allocated buffers: 188 KiB total

« tmpbuf cluster &
get contents vfatname block of
65 KiB each!

« CONFIG FS FAT MAX CLUSTSIZE=4096
« Save 120 KiB of memory!

$ size u-boot

text data bss dec hex filename
163532 6948 18048 188528 2e070 u-boot

© 2018 Synopsys, Inc. 11

$ nm --size-sort --reverse-sort u-boot | head -n 5
00010000 b tmpbuf cluster

00010000 B get contents vfatname block

00001414 b hist lines

00000296 t do fdt

00000812 t set contents

#define MAX CLUSTSIZE CONFIG FS FAT MAX CLUSTSIZE

static u8 tmpbuf cluster[MAX CLUSTSIZE]
~_aligned(ARCH DMA MINALIGN);

~u8 get contents vfatname block[MAX CLUSTSIZE]

SYNOPSYS'

Compile-time optimizations summary: /2 size
Memory foot-print reduced from 422 to 188 KiB (saved 234 KiB)

* Analyze
— Main contributors were huge statically allocated buffers

—Primary tools:
—bloat-o-meter (https:/qgit.kernel.org/pub/scm/linux/kernel/qgit/torvalds/linux.git/tree/scripts/bloat-o-meter)

—sSize
— NnNm
 Be practical
—Unused options might add to memory usage significantly (56 KiB in our case)
» Use advanced features of the toolchain
—5% size reduction due to dead code elimination
—Link Time Optimization (LTO) might help a bit more

© 2018 Synopsys, Inc. 12 SynUPSyS

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/bloat-o-meter

Execution from ROM

Relocation & memory partitioning

© 2018 Synopsys, Inc. 13 S‘/"UPS‘/SQ

[Self-] relocation

Fundamental feature of U-Boot

* Why relocation?
—RAM is much larger
— DDR might require initialization before use
—We’'ll need RAM anyways so why not?

« 2 major stages:

— Pre-relocation (common/board f.c)
Execute code from ROM/flash with limited
RAM options:

— On-chip SRAM
— Locked D#$ lines (x86)
— DDR (sometimes)

— After-relocation (common/board r.c)
Executing from RAM (usually DDR)

© 2018 Synopsys, Inc. 14

u-boot.bin

~

Stack, heap, ENV etc

SYNOPSYS'

Don’t relocate*
What if RAM size < ROM size = u-boot.bin

» Only supported for ARC as of today

« Add support for your architecture:
264d298fda39 (“arc: Introduce a possibility to

not relocate U-boot”)
* In platform/board code signal your intention
« Keep executing code from ROM/flash

« Use RAM only for data
—Heap
— Stack
—.data
— Environment

— Payload

© 2018 Synopsys, Inc. 15

\ J

\

J

ROM

RAM

SYNOPSYS

http://git.denx.de/?p=u-boot.git;a=commit;h=264d298fda39

Memory partitioning
Standard U-Boot CONFIG xxx constants

ivt, .text, .rodata |:.d:

CONFIG _SYS TEXT BASE //f
CONFIG_SYS SDRAM SIZE

A
(\
Stack] .bss Heap ENV
\ A)
CONFIG SYS SDRAM BASE ! !
—=>To - CONFIG SYS MALLOC LEN CONFIG ENV SIZE

CONFIG SYS INIT SP ADDR

© 2018 Synopsys, Inc. 16 S‘/"UPS‘/SG

Definition of derived constants

configs/iot devkit.h

#define CONFIG SYS MONITOR BASE

#define SRAM BASE
#define SRAM SIZE
#define DCCM BASE
#define DCCM SIZE

#define CONFIG SYS SDRAM BASE
#define CONFIG SYS SDRAM SIZE
#define CONFIG SYS INIT SP_ADDR
#define CONFIG SYS MALLOC LEN
#define CONFIG SYS BOOTM LEN
#define CONFIG SYS LOAD ADDR
#define ROM BASE

#define ROM SIZE

#define RAM DATA BASE

#define RAM DATA SIZE

CONFIG SYS TEXT BASE

0x30000000
SZ 128K
0x80000000
SZ 128K

DCCM BASE
DCCM SIZE

(CONFIG SYS SDRAM BASE + SZ 32K)
SZ 64K

SZ 128K

SRAM BASE
CONFIG SYS MONITOR BASE

SZ 256K

CONFIG SYS INIT SP ADDR
CONFIG SYS SDRAM SIZE - \
(CONFIG SYS INIT SP ADDR - \
CONFIG SYS SDRAM BASE) - \
CONFIG SYS MALLOC LEN - \
CONFIG ENV SIZE

board/synopsys/iot devkit/u-boot. lds

MEMORY {

ROM :
RAM :

}
SECTIONS

{

ORIGIN
ORIGIN

ROM BASE, LENGTH = ROM SIZE
RAM DATA BASE, LENGTH = RAM DATA SIZE

. = CONFIG SYS MONITOR BASE;
{ *(.1ivt); } > ROM

Livt

text

{

.rodata :

(.text); } > ROM
{ *(.rodata*); } > ROM

__rom_end = .;

.data :

{

__ram_start .
(.data)

__ram_end = .;

} > RAM AT > ROM

.bss :

} > RAM

{

__bss start o
(.bss)

__bss end = .;

https://sourceware.org/binutils/docs/Id/Output-Section-UMA.htmI#Output-Section-LMA

© 2018 Synopsys, Inc. 17

SYNOPSYS

https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html#Output-Section-LMA

Memory partitioning

Derived constants

ROM_SIZE
A

ROM BASE // ~_rom _end —’/f

RAM DATA SIZE
A

RAM Stack bss | Heap ENV

\
RAM DATA BASE i:;] I\\\\\\‘-__ __bss _end
_ _bss start

__ram start

__ram_end

© 2018 Synopsys, Inc. 18 S‘/"UPS‘/SG

Required quirks

They are not too many

« Signal intention to skip relocation /* 1. Don't relocate U-Boot */
—Set GD FLG SKIP RELOC flag gd->Tlags |= 6D_FLG_SKIP_RELOC;
« Copy .data section from ROM to RAM /* 2. Copy data from ROM to RAM */
) u8 *src = _ rom end;
« Zero .bss asusualin clear bss() e _:ca):_::art;

while (dst < _ ram_end)

*dst++ = *src++;
/* 3. Zero .bss as usual in clear bss() */

size t len = (size t)& bss end - (size t)& bss start;
memset ((void *) & bss start , 0x00, len);

© 2018 Synopsys, Inc. 19 S‘/"UPS‘/SG

Run-time issues

© 2018 Synopsys, Inc. 20 S‘/"UPS‘/SQ

-ENOMEM

Even though we boot to command prompt “usb start’ fails

* Problem

— Driver attempts to allocate 64 KiB buffer

* Fix

—42637fdae833 (“usbh: dwc?2: Allow selection of data

buffer size”)

—Set CONFIG_USB_DWC?2 BUFFER_SIZE = 16

(instead of default 64)
 Hint
— Check malloc() return value early!

© 2018 Synopsys, Inc. 21

starting USB...

USBO:

probe failed, error -12

USB error: all controllers failed lowlevel init

[14]
[13]
[12]
[11]
[10]

[

[
[
[
[
[
[
[
[
[

9]
8]
7]
6]
5]
4]
3]
2]
1]
0]

malloc(bytes = 66328) = dlmalloc.c!1241
memalign()+0x78 = dlmalloc.c!1922

alloc priv()+0xla = device.c!269

device probe()+0x9c = device.c!325+0x6

usb init()+0xa2 = usb-uclass.c!276

do usb start()+0xc = usb.c!586+0x4

do usb()+0x4e = usb.c!657

cmd call()+0xc = command.c!499+0xc

cli simple run command()+0x94 = cli simple.c!249
cli simple loop()+0x36 = cli simple.c!299+0xa
main_ loop()+0x30 = main.c!66

run_main loop()+0x6 = board r.c!645+0x4
initcall run list()+0x2a = initcall.c!31
board init r()+0x18 = board r.c!877

pc 0x200004a2, sp 0x80007b40, ()

SYNOPSYS'

http://git.denx.de/?p=u-boot.git;a=commit;h=42637fdae833

Stack overflow

Compared to malloc we don’t control stack size

* Problem

—Instead of 78 bytes for struct legacy mbr we
allocate 78 * 512 (“blksz”) = 40KiB on stack

e Fix
—8639e34d2ch5e (“part: Allocate only one legacy mbr

buffer”)
e Hints

—ALLOC ALIGN BUFFER(),
ALLOC CACHE ALIGN BUFFER() allocate buffers
on stack

—Use Memory Protection Unit (MPU) if possible

— Locate stack right after non-existing memory or at
least read-only region to get early exception

© 2018 Synopsys, Inc. 22

IoTDK# usb start
starting USB...

USBO:

scanning bus 0 for devices...

part_test dos() = part dos.c!90

part_init()+0x30 = part.c!241

usb _stor probe device()+0xfc = usb storage.c!280
device probe()+0x84 = device.c!416
usb_scan_device()+0x154 = usb-uclass.c!658
usb_hub_port connect change()+0x10a = usb_hub.c!422
usb_scan_port()+0x19a = usb _hub.c!505

device probe()+0x12c = device.c!423

usb_scan device()+0x154 = usb-uclass.c!658

usb_scan bus()+0x2a = usb-uclass.c!216

usb init()+0xf8 = usb-uclass.c!294

do usb start()+0xc = usb.c!586+0x4

do _usb()+0x4e = usb.c!657
usb_stor probe device()+0x2560 = command.c!499+0xc
usb _stor probe device()+0xb34 = cli simple.c!249
usb _stor probe device()+0xba6 = cli simple.c!299+0xa
main loop()+0x30 = main.c!66

main loop()+0x6ba = board r.c!645+0x4
initcall run list()+0x2a = initcall.c!31

main_ loop()+0x7c4 = board r.c!877

SYNOPSYS'

http://git.denx.de/?p=u-boot.git;a=commit;h=8639e34d2c5e

Conclusions

U-Boot could be ported on very memory-constrained system

« 200 KiB of ROM and 128 KiB of RAM is enough for full-scale U-Boot
—USB and MMC drivers
— FAT file-system with write support

» With tools, trials & errors it's possible to shrink memory footprint a lot
—With vary basic tools it's possible to identify large statically-allocated objects
— Allocations happen in run-time as well
— Fixes and improvements to generic code might be required

» Special measures required to skip relocation
— Requires architecture-specific changes in generic code

* Run-time issues are mostly bound to:
— Attempts to allocate more memory than available

— Stack overflows might be tricky to identify especially
— If there’s memory before stack
— If memory subsystem doesn’t signal wrong access (missing or read-only memory)

© 2018 Synopsys, Inc. 23

SYNOPSYS

SYNOPSYs

Silicon to Software’

Thank You

