
Copyright © 2018 - Open Networking Foundation

Tutorial:
P4 and P4Runtime Technical Introduction

and Use Cases for Service Providers

Link to slides:
http://bit.ly/onos-p4-tutorial-slides

Carmelo Cascone
Open Networking Foundation

Open Networking Summit 2018, September 27 2018

http://bit.ly/onos-p4-tutorial-slides

Copyright © 2018 - Open Networking Foundation

Outline

● P4
● P4Runtime
● ONOS support for P4/P4Runtime
● Use cases

○ Vendor/silicon-independent fabric
○ VNF offloading

Copyright © 2018 - Open Networking Foundation

P4
The Data Plane Programming Language

Copyright © 2018 - Open Networking Foundation

P4 - The Data Plane Programming Language

● Domain-specific language to formally define the data plane pipeline
behavior

○ Describe protocol headers, lookup tables, actions, counters, etc.
○ Can describe fast pipelines (e.g ASIC, FPGA) as well as a slower ones (e.g. SW switch)

● Good for programmable switches, as well as fixed-function ones
○ Defines “contract” between the control plane and data plane for runtime control

4

Packets

Table {
 match
 actions
}

Programmable or fixed-function
data plane pipeline

JUST WHAT

I NEED

Compiler (provided by switch vendor)
Configure programmable ASIC/FPGA
or maps to fixed-function ASIC tables

mypipeline.p4

Copyright © 2018 - Open Networking Foundation

Evolution of the language

● P414
○ Original version of the language
○ Assumed specific device capabilities
○ Good only for a subset of programmable switch/targets

● P416
○ More mature and stable language definition
○ Does not assume device capabilities, which instead are defined by target

manufacturer via external libraries/architecture definition
○ Good for many targets, e.g. switches and NICS, programmable or

fixed-function
○ Focus of this tutorial

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

PISA: Protocol-Independent Switch Architecture

Programmer declares
the headers that

should be recognized
and their order in the

packet

Programmer defines
the tables and the
exact processing

algorithm

Programmer declares
how the output packet

will look on the wire

6

Abstract machine model of programmable switch architecture

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

Mapping a simple logical pipeline on PISA

Ethernet
address

table

IPv4
address

table
ACL
filter
table

7

IPv4
address

table

IPv6
address

table

P4 compiler
Allocate resources to
realize the pipeline

Large

Small

Copyright © 2018 - Open Networking Foundation

P4 programs and architectures
my_program.p4

Defines the processing
of each block

architecture.p4
Defines which blocks are
available, the interfaces of each
block, and their capabilities

8

Copyright © 2018 - Open Networking Foundation

PSA - Portable Switch Architecture

● Community-developed architecture
○ https://github.com/p4lang/p4-spec/tree/master/p4-16/psa

● Describes common capabilities of a network switch
○ Which process and forward packets across multiple interface ports

● 6 programmable P4 blocks + 2 fixed-function blocks
● Defines capabilities beyond match+action tables

○ Counters, meters, stateful registers, hash functions, etc.

9

https://github.com/p4lang/p4-spec/tree/master/p4-16/psa

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

P4 program template (V1Model architecture) 10

Copyright © 2018 - Open Networking Foundation

P4 program example: simple_router.p4 11

header ethernet_t {

 bit<48> dst_addr;

 bit<48> src_addr;

 bit<16> eth_type;

}

header ipv4_t {

 bit<4> version;

 bit<4> ihl;

 bit<8> diffserv;

 …

}

parser parser_impl(packet_in pkt, out headers_t hdr) {

 /* Parser state machine to extract header fields */

}

action set_next_hop(bit<48> dst_addr) {

 ethernet.dst_addr = dst_addr;

 ipv4.ttl = ipv4.ttl - 1;

}

...

table ipv4_routing_table {

 key = {

ipv4.dst_addr : LPM; // longest-prefix match

 }

 actions = {

set_next_hop();

drop();

 }

 size = 4096; // table entries

}

Copyright © 2018 - Open Networking Foundation

Simple router example action ipv4_forward(bit<48> dst_addr, bit<9> port) {
 ethernet.dst_addr = dst_addr;
 standard_metadata.egress_spec = port;
 ipv4.ttl = ipv4.ttl - 1;
}
table ipv4_routing_table {
 key = {

ipv4.dst_addr : LPM; // longest-prefix match
 }
 actions = {

ipv4_forward();
drop();

 }
}

Control plane populates table entries

12

● Data plane (P4) program
○ Defines the format of the table

■ Match fields, actions, action data
(parameters)

○ Performs the lookup
○ Executes the chosen action

● Control plane
○ Populates table entries with specific

information
■ Based on configuration, automatic discovery,

protocol calculations

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

P4 workflow 13

P4 Program

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary

Control Plane

Data PlaneTables Extern
objectsLoad

Vendor supplied

User supplied

Add/remove
table entries

CPU port

Packet-in/outExtern
control

Runtime control

Copyright © 2018 - Open Networking Foundation

P4Runtime
Control protocol for P4-defined data planes

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

Traditional/OpenFlow vs. P4 paradigm

OpenFlow or
legacy

15

P4Runtime

Copyright © 2018 - Open Networking Foundation

Do we need yet another data plane control API? 16

Copyright © 2018 - Open Networking Foundation

Yes, we need P4Runtime 17

API
Target-independent

Same API works with
different

switches/vendors

Protocol-independent

Same API allows control of new
protocols

Pipeline-independent

Same API allows control of
many pipelines formally

specified

OpenFlow ✔
✘

Protocol headers and actions
hard-coded in the spec

✘
Pipeline specification is not

mandated (TTPs did not solve
the problem)

Switch
Abstraction

Interface (SAI)
✔

✘
Designed for legacy forwarding

pipelines (L2/L3/ACL)

✘
Implicit fixed-function pipeline

P4Runtime ✔ ✔ ✔ (with P4)

P4 Program as Fixed-Function Chip Abstraction

● P4 program tailored to apps / role - does not describe the hardware
● Switch maps program to fixed-function ASIC
● Enables portability

ASIC 1 ASIC 2

Logical

Physical

Control

Slide

fro
m Google

Copyright © 2018 - Open Networking Foundation

Control plane

P4Runtime overview

● Protocol for runtime control of P4-defined switches
○ Designed around PSA architecture but can be extended to others

● Work-in-progress by the p4.org API WG
○ Initial contribution by Google and Barefoot
○ Draft of version 1.0 available: https://p4.org/p4-spec/

● Protobuf-based API definition
○ Automatically generate client/server code for many languages
○ gRPC transport

● P4 program-independent
○ API doesn’t change with the P4 program

● Enables field-reconfigurability
○ Ability to push new P4 program, i.e. re-configure the switch

pipeline, without recompiling the switch software stack

19

p4runtime.proto
(API)

Program-independent
server (e.g. gRPC)

Target driver

P4 target

Slide courtesy P4.org

https://p4.org/p4-spec/

Copyright © 2018 - Open Networking Foundation

Protocol Buffers (protobuf) Basics

● Language for describing data for
serialization in a structured way

● Common binary wire-format

● Language-neutral
○ Code generators for: Action Script, C,

C++, C#, Clojure, Lisp, D, Dart, Erlang,
Go, Haskell, Java, Javascript, Lua,
Objective C, OCaml, Perl, PHP, Python,
Ruby, Rust, Scala, Swift, Visual Basic,
...

● Platform-neutral

● Extensible and backwards compatible

● Strongly typed

20

syntax = "proto3";

message Person {
 string name = 1;
 int32 id = 2;
 string email = 3;

 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 string number = 1;
 PhoneType type = 2;
 }

 repeated PhoneNumber phone = 4;
}

Copyright © 2018 - Open Networking Foundation

gRPC Basics
● Use Protobuf to define service API

and messages

● Automatically generate native stubs
in:
○ C / C++, C#, Dart, Go, Java,

Node.js, PHP, Python, Ruby
● Transport over HTTP/2.0 and TLS

○ Efficient single TCP connection
implementation that supports
bidirectional streaming

21

Copyright © 2018 - Open Networking Foundation

p4runtime.proto (gRPC service)
Enables a local or remote entity to load the pipeline/P4 program, send/receive
packets, arbitrate mastership, read and write forwarding table entries, counters,
and other P4 entities.

service P4Runtime {

 rpc Write(WriteRequest) returns (WriteResponse) {}

 rpc Read(ReadRequest) returns (stream ReadResponse) {}

 rpc SetForwardingPipelineConfig(SetForwardingPipelineConfigRequest)

 returns (SetForwardingPipelineConfigResponse) {}

 rpc GetForwardingPipelineConfig(GetForwardingPipelineConfigRequest)

 returns (GetForwardingPipelineConfigResponse) {}

 rpc StreamChannel(stream StreamMessageRequest)

 returns (stream StreamMessageResponse) {}

}

From: https://github.com/p4lang/p4runtime/blob/master/proto/p4/v1/p4runtime.proto

22

https://github.com/p4lang/p4runtime/blob/master/proto/p4/v1/p4runtime.proto

Copyright © 2018 - Open Networking Foundation

P4Runtime Write Request

message WriteRequest {
 uint64 device_id = 1;
 uint64 role_id = 2;
 Uint128 election_id = 3;
 repeated Update updates = 4;
}

message Update {
 enum Type {
 UNSPECIFIED = 0;
 INSERT = 1;
 MODIFY = 2;
 DELETE = 3;
 }
 Type type = 1;
 Entity entity = 2;
}

message Entity {
 oneof entity {
 ExternEntry extern_entry = 1;
 TableEntry table_entry = 2;
 ActionProfileMember

action_profile_member = 3;
 ActionProfileGroup

action_profile_group = 4;
 MeterEntry meter_entry = 5;
 DirectMeterEntry direct_meter_entry = 6;
 CounterEntry counter_entry = 7;
 DirectCounterEntry direct_counter_entry = 8;
 PacketReplicationEngineEntry

packet_replication_engine_entry = 9;
 ValueSetEntry value_set_entry = 10;
 RegisterEntry register_entry = 11;
 }
}

23

Copyright © 2018 - Open Networking Foundation

P4Runtime Table Entry 24

message TableEntry {
 uint32 table_id;
 repeated FieldMatch match;
 Action action;
 int32 priority;
 ...
}

message FieldMatch {
 uint32 field_id;
 message Exact {
 bytes value;
 }
 message Ternary {
 bytes value;
 bytes mask;
 }
 message LPM {
 bytes value;
 uint32 prefix_length;
 }
 ...
 oneof field_match_type {
 Exact exact;
 Ternary ternary;
 LPM lpm;
 ...
 }
}

message Action {
 uint32 action_id;
 message Param {
 uint32 param_id;
 bytes value;
 }
 repeated Param params;
}

p4runtime.proto simplified excerpts:
To add a table entry, the control
plane needs to know:

• IDs of P4 entities
◦ Tables, field matches, actions,

params, etc.

• Field matches for the
particular table

◦ Match type, bitwidth, etc.

• Parameters for the particular
action

• Other P4 program attributes

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

P4 compiler workflow 25

test.p4

test.bin

Control plane

p4runtime.proto

P4Runtime server

Target driver

Switch ASIC

p4c
(compiler)

P4 compiler generates 2 files:

1. Target-specific binaries
○ Used to configure switch pipeline

(e.g. binary config for ASIC, bitstream for FPGA, etc.)

2. P4Info file
○ Describes “schema” of pipeline for runtime

control
○ Captures P4 program attributes

■ Tables, actions, parameters, etc.
○ Protobuf-based format
○ Target-independent compiler output

■ Same P4Info for SW switch, ASIC, etc.

test.p4info

Full P4Info protobuf specification:
https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

P4Info example 26

...

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 /* Action implementation */
}

...

table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

basic_router.p4
actions {
 id: 16786453
 name: "ipv4_forward"
 params {
 id: 1
 name: "dstAddr"
 bitwidth: 48
 ...
 id: 2
 name: "port"
 bitwidth: 9
 }
}
...
tables {
 id: 33581985
 name: "ipv4_lpm"
 match_fields {
 id: 1
 name: "hdr.ipv4.dstAddr"
 bitwidth: 32
 match_type: LPM
 }
 action_ref_id: 16786453
}

basic_router.p4info

P4 compiler

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

P4Runtime table entry example 27

table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\n\000\001\001"
 prefix_len: 32
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\000\000\000\000\n"
 }
 params {
 param_id: 2
 value: "\000\007"
 }
 }
}

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 /* Action implementation */
}
table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

hdr.ipv4.dstAddr=10.0.1.1/32
-> ipv4_forward(00:00:00:00:00:10, 7)

basic_router.p4

Logical view of table entry

Protobuf message

Control plane
generates

Copyright © 2018 - Open Networking Foundation

P4Runtime SetPipelineConfig

message SetForwardingPipelineConfigRequest {
 enum Action {
 UNSPECIFIED = 0;
 VERIFY = 1;
 VERIFY_AND_SAVE = 2;
 VERIFY_AND_COMMIT = 3;
 COMMIT = 4;
 RECONCILE_AND_COMMIT = 5;
 }
 uint64 device_id = 1;
 uint64 role_id = 2;
 Uint128 election_id = 3;
 Action action = 4;
 ForwardingPipelineConfig config = 5;
}

28

message ForwardingPipelineConfig {
 config.P4Info p4info = 1;
 // Target-specific P4 configuration.
 bytes p4_device_config = 2;
}

test.p4

json Control plane

P4Runtime server

Target driver

Switch ASIC

p4c
(compiler)

p4info

Pipeline config

Pipeline config bits

SetPipelineConfig()

Copyright © 2018 - Open Networking Foundation

Project Stratum - P4Runtime switch agent implementation

● Open source, lightweight, production quality thin switch OS
● Implements next-gen SDN interfaces

○ P4Runtime for control
■ Uses P4 as the data pipeline contract across fixed function and programmable

hardware
○ gNMI using OpenConfig models for configuration/monitoring/telemetry
○ gNOI for operations

● Rich community of service and cloud providers, chipset
vendors, whitebox and blackbox switch vendors
○ Google committed to using Stratum in production network at scale

https://stratumproject.org/

https://stratumproject.org/

Copyright © 2018 - Open Networking Foundation

ONOS
A control plane for P4/P4Runtime devices

Copyright © 2018 - Open Networking Foundation

ONOS architecture recap

OpenFlow NetconfP4Runtime ...more

OVS Arista Barefoot Mellanox Ciena Cisco Corsa

Fujitsu HP Huawei Juniper Lumentum Microsemi Polatis ...

FlowRule APITopology API FlowObjective API Intent API Packet API ...

Distributed core
State management, notifications, high-availability & scale-out

Northbound API

Device driver
Allow device-specific variants

of standard protocols

Protocol libraries

AppsAppsApps
Control and configure the network

using a global topology view
and independently of the device-specific details

31

Copyright © 2018 - Open Networking Foundation

P4 and P4Runtime support in ONOS

Goals:

1. Allow ONOS users to bring their own P4 program

2. Allow apps to control custom/new protocols, as defined in the
P4 program

3. Allow existing apps to control any P4 pipeline without
changing the app, i.e. enable app portability accros many P4
pipelines

Copyright © 2018 - Open Networking Foundation

Pipeline-aware/agnostic apps 33

Pipeline-agnostic
app

P4Runtime server (e.g. Stratum)

Pipeline-specific
Flow Rules, Groups,
Meters, etc

Translation
Maps FlowObjective to

pipeline-specific table entries

Protocol
libraries

Core

Events
(packet, topology, etc.)

P4Runtime client

Pipeline-aware
app

Pipeconf
Store P4 pipeline

FlowObjective API

gRPC
Deploy P4 program
Table management, etc

ONOS

Device drivers

Define flow rules using same table
names and headers/action as in the
P4 program. E.g match on
“hdr.my_protocol.my_field”

Powerful ONOS API, allows
apps to declare device-level
forwarding intents

Contains:
- P4Info (pipeline model)
- P4 compiler output, to

program device pipeline
- “Pipeline drivers” used by

ONOS translation services

Switch

Copyright © 2018 - Open Networking Foundation

P4Runtime support in ONOS 1.14 (Owl)

P4Runtime control entity ONOS API

Table entry Flow Rule Service, Flow Objective Service
Intent Service

Packet-in/out Packet Service

Action profile group/members, PRE multicast
groups

Group Service

Meter Meter Service (indirect meters only)

Counters Flow Rule Service (direct counters)
P4Runtime Client (indirect counters)

Pipeline Config Pipeconf

Unsupported features - community help needed!
Parser value sets, registers, digests, clone sessions

34

Copyright © 2018 - Open Networking Foundation

Use case 1:
silicon-independent fabric

Copyright © 2018 - Open Networking Foundation

Trellis – Multi-purpose Leaf-Spine Fabric

● Prominent example of ONOS application
○ In production at Comcast

● Multi-purpose leaf-spine fabric designed for NFV and
access/edge applications
○ Built with white-box switches, open source software, SDN based

● Extensive feature set
○ Bridging/VLANs, IPv4/v6 unicast and multicast routing, DHCP-relay,

pseudowires, QinQ, vRouter & more

● Works with OpenFlow and P4/P4Runtime

Copyright © 2018 - Open Networking Foundation

Trellis demo @ Booth 5

2-stage leaf-spine fabric with multi-vendor
white-box switches:

- OFDPA (Broadcom
Trident2/Tomahawk)

- Stratum (Barefoot Tofino)

Copyright © 2018 - Open Networking Foundation

38

ONOS

P4Runtime

Fabric.p4
pipeconf

Barefoot Tofino

Mellanox Spectrum 1

fabric.p4 driverOF-DPA driver

Broadcom Qumran

Broadcom Trident2

Broadcom Tomahawk

OpenFlow

Segment Routing DHCP L3 Relay vRouter Multicast

Pipeline-agnostic apps - use ONOS FlowObjective API

Trellis & P4

...

White-box switches

Trellis apps

Copyright © 2018 - Open Networking Foundation

fabric.p4

● P4 implementation of the Trellis reference pipeline
○ Inspired by Broadcom OF-DPA pipeline
○ Tailored to Trellis needs (fewer tables, easier to control)
○ Work in progress:

■ Missing support for IPv6, double-VLAN termination

● Bring more heterogeneity in Trellis with P4-capable silicon
○ Works with both programmable and fixed-function chips (logical pipeline of legacy

L2/L3/MPLS features)
○ Any switch pipeline that can be mapped to fabric.p4 can be used with Trellis

● Extensible open-source implementation
○ https://github.com/opennetworkinglab/onos/.../fabric.p4

39

https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/src/main/resources/fabric.p4

Copyright © 2018 - Open Networking Foundation

fabric.p4 pipeline 40

In-port + VLAN filtering table

Forwarding classifier

Bridging
IPv4 unicast

routingMPLS

Unicast MulticastHashed
(ECMP)

Next ID mapping

IPv6 unicast
routing (WIP)

ACL

Copyright © 2018 - Open Networking Foundation

Use case 2:
VNF offloading

Copyright © 2018 - Open Networking Foundation

VNF offloading

● Programmable data planes offer great flexibility beyond “plumbing”

● Benefits
○ Performance - VNFs executed at line rate, e.g. O(Tbit/s) for DC switch
○ Low latency and jitter - Avoid non-determinism of x86 processing
○ Power consumption - Less CPU resources for packet processing, use switch that is

there anyways

42

VNF

Compute (x86)

VNFControl
plane ...

Fabric (programmable ASIC)

Fast plumbing Fast
VNF

Progr. ASIC capabilities VNF building blocks

Arbitrary header
parsing/deparsing

Domain specific encap/decap
(e.g. PPPoE termination, GTP, etc.)

Stateful memories TCP connection tracking
(L4 load balancing, NAT, firewall, etc.)

Computational capabilities Billing

Copyright © 2018 - Open Networking Foundation

M-CORD with P4 fastpath 43

ToR ToR

Spine Spine

HSSSPGW-c

SPGW-u App

…

P4Runtime
P4 program deployment and table
management

Upstream
router

Backhaul
network

eNodeB MME

GTP tunnels

Mobile subscriber traffic

GTP termination implemented
with P4 and executed directly
on the switch ASIC (spgw.p4)

ONOS

Trellis Apps

CORD controller (XOS)
…

Control plane VNFs

Demo @ MWC & ONS NA ‘18

Copyright © 2018 - Open Networking Foundation

spgw.p4

● PoC P4 implementation of the Serving and Packet Gateway
(S/PGW) user plane:
○ ~300 lines of P4_16 code
○ Integrated with fabric.p4
○ https://github.com/opennetworkinglab/onos/.../spgw.p4

● Good enough to demonstrate end-to-end connectivity
○ Support GTP encap/decap, filtering, charging functionalities

● Missing features (future work - need help)
○ QoS, downlink buffering during handovers

44

https://github.com/opennetworkinglab/onos/blob/master/pipelines/fabric/src/main/resources/include/spgw.p4

Copyright © 2018 - Open Networking Foundation

SPGW-u ONOS App

ToR ToR

Spine Spine

HSS
SPGW-c

ONOS

Trellis AppsSPGW-u App …

P4Runtime
spgw.p4 table entries

MME

3GPP

3GPP Control and User Plane Separation (CUPS) protocol
Create/modify/delete GTP sessions

Open source EPC from Intel/Sprint

Pipeline-aware app
Works only with spgw.p4

45

fabric.p4

fabric+spgw.p4

Copyright © 2018 - Open Networking Foundation

Residential service edge/BNG (se.p4)

● ONF is working with Deutsche Telekom to open-source a
production-grade implementation of a residential service
edge/BNG in P4

● Enables fast path for residential access

● Features:
○ PPPoE termination
○ Reverse-path filtering (MAC, IPv4/v6)
○ Metering
○ TR-101 double-VLAN termination
○ 2-label MPLS termination

● Community help needed for integration with Trellis and fabric.p4

Copyright © 2018 - Open Networking Foundation

Pointers

● P4_16 / P4Runtime specifications
○ https://p4.org/specs/

● Stratum project
○ https://stratumproject.org/

● ONOS
○ https://wiki.onosproject.org/display/ONOS/Wiki+Home

● Fabric.p4
○ https://wiki.onosproject.org/x/wgBkAQ

● Hands-on tutorial with P4/P4Runtime/ONOS
○ http://bit.ly/onos-p4-tutorial-slides

https://p4.org/specs/
https://stratumproject.org/
https://wiki.onosproject.org/display/ONOS/Wiki+Home
https://wiki.onosproject.org/x/wgBkAQ
http://bit.ly/onos-p4-tutorial-slides

Copyright © 2018 - Open Networking Foundation

ONOS-P4 Brigade - Join the effort!

Learn more - P4 Brigade Wiki:
https://wiki.onosproject.org/display/ONOS/P4+brigade

P4 Brigade mailing list:
brigade-p4@onosproject.org

48

https://wiki.onosproject.org/display/ONOS/P4+brigade
mailto:brigade-p4@onosproject.org

Copyright © 2018 - Open Networking Foundation

Thanks

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

Silicon-independent remote control 50

P4Runtime
agent (e.g. Stratum)

Target driver

Vendor A
(programmable)

P4Runtime
agent (e.g. Stratum)

Target driver

Vendor B
(fixed-function)

P4Runtime
agent (e.g. Stratum)

Target driver

Vendor C
(fixed-function)

Remote control plane (e.g. ONOS/ODL)

OSPF BGP P4-defined
custom protocol etc.

table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\f\000\...
 prefix_len: 8
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\0...
 }
 params {
 param_id: 2
 value: 7
 }
 }
}

Target-independent
protobuf format

p4info p4info p4info

p4info

Copyright © 2018 - Open Networking FoundationSlide courtesy P4.org

Portability of local control plane 51

P4Runtime agent
(e.g. Stratum)

Target driver

P4 target

Local control plane

OSPF BGP P4-defined
protocol

etc.

table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\f\000\...
 prefix_len: 8
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\0...
 }
 params {
 param_id: 2
 value: 7
 }
 }
}

Same
target-independent

protobuf format
p4info

p4info

The P4 Runtime API can be used equally well
by a remote or local control plane

Copyright © 2018 - Open Networking Foundation

Performance demo @ ONS NA 2018

~490ns to perform GTP encap
plus forwarding (ToR 1)

Overhead due to GTP and INT headers
(when processing small packets)

Throughput

~480ns to perform forwarding
(ToR 2)

Inband network telemetry (INT) used to
measure GTP processing latency

52

