

Delivering Network Services using Cloud Native

Methodology
Eddie Arrage

Wenjing Chu

Futurewei Technologies Inc.

Agenda

• Cloud Native
Concepts/Methodology (10 min)

• Segmenting & Instrumenting
Microservices (15 min)

• Instrumentation

• Example in Clover

• Managing & Controlling Traffic
(20 min)

• Service Meshes / Istio

• Mesh Visibility Tools

• Mesh Traffic Management

• Augmenting Meshes

• Debugging & Monitoring (25 min)
• Visibility/Observability Infrastructure

• Introduction to Clovisor

• Integrating & Validating (10 min)
• L7 Jmeter validation

• Jenkins integration

• Deploying & Managing Services,
Infrastructure (15min)

• Introduction to Spinnaker – CI/CD

Cloud Native

• Benefits:

– Portable

– Scalable

– Ephemeral

– Accessible

– Flexible

– Dynamically managed

(Kubernetes)

– Containerized

– Microservice oriented

Application / Network Co-Existence

• Operators need to manage network services with cloud-native constructs

• Bridge divide between built-in networking (Kubernetes, service meshes) and apps

• Example: Google Istio as a service cloud offering

• Support traffic management for CI/CD precepts: canary, blue/green, etc.

• App evolution to microservices

• Develop, debug and manage individual Lego blocks

• App developers want abstracted network

• Usually to support web/REST oriented services

• Example in LFN: many ONAP services have REST interface

• Ideal for control-plane services

• Network management model needs to fit paradigm

App Microservices

Network

Microservices

Ingress

Cloud Native / Microservice Challenges

• Microservice sprawl
• Debug difficult without tools

for visibility and traceability
of entire system

• Validation difficult as developers
need to test system but might
only own one service

• Integrated testing and ease of
system deployment150+ containerized

services

• Traditional operators need to consider
how to offer compelling cloud services

• Control traffic in/out of containerized
environments

• Network components for configurable ingress
with security

• Currently CI/CD pipeline in most LFN
projects largely stops at CI level

• Need to manage deployment pipelines

• Support traffic management for cloud
native

Cloud Native Methodology

Segmenting &
Instrumenting
Microservices

Managing &
Controlling Traffic

Debugging &
Monitoring

Integrating &
Validating

Deploying &
Managing
Services,

Infrastructure Continuously

Yardstick

Segmenting & Instrumenting Microservices

Microservices

– Monolithic App

– Break down into

smaller chunks

• Microservice architecture puts functionality

into separate services:

– Iterative development

– Division of labor

– Reduce single point of failure

– Language/deployment flexibility

– Build different apps using subsets of services

– Operations stakeholders are able to manage and

upgrade components more easily

Microservice Instrumentation

• ConfigMaps

– Manage/inject app

configuration

– Kubernetes resource

– Keep containers

agnostic

Micro-

services A

Micro-

services B

Micro-

services C

• gRPC

– Open-source RPC framework

– Client/server

– Bindings for most languages

– Frequent configuration

• Shared Data Stores

– Exchange network data, state

management

Microservice Clover Example

snort-idsproxy-access-control

Server Server

• Sample Network Services

– Security: IDS, WAF

– L4-7: proxy, load balancer…

– Combine in various CNFs

– Employ Linux services

– Implement gRPC server for
instrumentation

– Redis data-store to share
packet, security event data

• Clover-System Tools

– cloverctl - CLI interface

– clover-controller - in-cluster

message routing and UI

dashboard

– clover-jmeter – L4-7 client-

emulation for CI/CD,

validation

http-lb

Server

Client

clover-controller

Server

clover-jmeter

cloverctl

gRPC Demo

$ python -m pip install grpcio protobuf

Install for Python

$ python -m grpc_tools.protoc -I./ --python_out=. --grpc_python_out=. snort.proto

Generate gRPC code

Managing & Controlling Traffic

Service Meshes

• Dedicated layer for managing
service communication

• Intra-service within cluster

• External traffic entering cluster
(ingress)

• Internal traffic leaving cluster
(egress)

• Fit best for control-plane services

Service A

Sidecar A Sidecar B

Service B

Pod A Pod B

– Allows for more
advanced routing
than native k8s
networking

– ‘Sidecar’ injected
as a service proxy
in each pod

– Examples: Istio, Conduit,

Apache ServiceComb

Micro-
service A

Micro-
service B

Istio Service Mesh

• Traffic Management
• Load balancing

• Request routing

• Continuous deployment
• Canary

• A/B validation

• Fault injection

• Mirroring

• Secure communication

– Proxy oriented to
HTTP/gRPC

– mTLS (optional)

– Manual or automatic
(namespace) sidecar
injection

– Toggle in/out of mesh
easily

• Visibility Built-in

– Monitoring, tracing, logging

Istio Install

• Current release at 1.0.2,

• Works best on k8s v1.9+ (with mutating webhook)

Install Setup

– automatic sidecar

(namespace) sidecar

injection

– Manual sidecar

injection

Install Istio and SDC

sample with Clover

$ docker pull opnfv/clover:latest

$ sudo docker run --rm \

-v ~/.kube/config:/root/.kube/config \

opnfv/clover \

/bin/bash -c '/home/opnfv/repos/clover/samples/scenarios/deploy.sh'

Network Service Catalog

• Clover developing set of sample L7 network services for use in
k8s and meshes

• New in Clover Gambia release: modsecurity

(Web Application Firewall + Apache web server)

OPNFV Docker Hub
Images

Traffic within Mesh

Emulated Clients

clover-jmeter-master

– Inject jmeter into mesh

– Send traffic within cluster/mesh

– Service Delivery Controller
(SDC) Sample CNF

Istio Ingress

External Traffic into Mesh

Istio

Gateway

– Control how traffic is

routed within the mesh
– LB at the edge of mesh

receiving incoming/outgoing

connections

Mesh Services

Virtual

Service

Istio Request Routing (1-2)

• Content-based steering to determine destination of request

• Support CI/CD precepts with canary versions

Istio Request Routing (2-2)

• Flexible request routing with Virtual
Service

• Match traffic and route to back end
service

• Match based on URI, HTTP headers
(identity, user-agent)

• Control with ‘weight’ field

• Ideal to validate REST based APIs
and services

• Support CI/CD deployment workflows

URLs to domain

www.sdc.com

Match URI prefix

‘/test’ to

clover-server2

Match HTTP header

user-agent

‘chrome’ to

clover-server3

Everything else to

clover-server1

Istio Mirroring

• Mirroring or Shadowing
• Sends a copy of live traffic to a mirrored service

• Add an entry to Virtual Service resource under any route rule

Any traffic to clover-

server1 mirrored to

snort-ids

Istio Fault Injection &
Circuit Breaking

• Fault Injection
• Inject faults to test the resiliency of your application

• End-to-end failure recovery capability of the application as a whole

– Delay: timing failures

• Mimic network latency, or an

overloaded upstream service

– Abort: crash failures

• mimic failures in upstream

services (HTTP error codes)

• Useful for LFN projects that are planning or using cascading REST services

• Circuit Breaking
• Ejected from the load balancing pool when thresholds are exceeded

• number of health check failures or number of conditions such as connection and request limits

Istio - Control Egress
Traffic

• Default Istio-enabled services are unable to access URLs
outside of the cluster

• Pods use iptables to transparently redirect all outbound traffic to the
sidecar proxy, which only handles intra-cluster destination

Send traffic outside of mesh to

‘www.sdc.com’

(assuming this is a valid domain in DNS)

Istio Mesh - Visibility Tools

• Jaeger: Tracing

• Good raw data

• Individual traces in Jaeger

• Metrics list in Prometheus

• But difficult to get insight of entire
system (aggregate, top-level)

• Prometheus: Monitoring

• Bolstering security

• Improve visibility data

Augmenting Mesh/Kubernetes Ingress

Traffic
Redirect

Mirror

Integrate with
Istio ingress

controller clover-gateway
services

• New in Clover
Gambia release

Debugging & Monitoring

Clover Visibility

cloverctl

clover-controller clover-collector

clover UI

• Analyzes data from CNCF observability

tools to provide abstraction

• Gathers data and analyzes using Spark

• 4 core components (clover-system)

– clover-collector (within k8s)

– clover-controller (within k8s)

– cloverctl (external)

– clover UI (external)

• User interacts with cloverctl or UI

– CLI/UI use same REST API from clover-

controller service

– Chooses services to track

– Outputs analyzed data to Redis

CI jobs

(automation)

Data pipeline (future)

Clover Visibility
Initialization (1-2)

• Install Istio

• Install clover-system components within k8s

• Expose clover-controller using LB or NodePort k8s service resource

• Gambia release will have CLI / script installation

• Use CLI to initialize visibility

– Create traces, spans, metrics Cassandra schemas

• Start visibility

– Collector begins gathering data from Jaeger,

Prometheus

• Clear visibility

– Truncates tables

$ cloverctl init visibility

$ cloverctl start visibility –f visibility.yaml

$ cloverctl clear visibility

init

start

Clover Visibility
Initialization (2-2)

• Set sampling interval for collector

• Tracing/monitoring k8s DNS names

• Tracing/monitoring listening ports (Jaeger/Prometheus)

$ cloverctl start visibility –f visibility.yaml

visibility.yaml

metrics.yaml

$ cloverctl set visibility –f metrics.yaml

• Configure tracing services that visibility will analyze

• Configure metric prefixes/suffixes to analyze

Clover Visibility Stats (1-3)

• Analyze trace data at aggregate level

• Calculate average response time for various services

• Break down data in various ways

• Per URL, Per Service/URL, more TBA in Gambia release

Clover Visibility Stats (2-3)

• Find issues with REST services such as service HTTP status codes being returned

• Validate service mesh traffic management policies such as request routing by user-agent

(ex. mobile vs desktop)

Clover Visibility Stats (3-3)

• Characterize the

composition of the traffic

• Output service request/response

rates over time

– Lacks visibility for:

• L3 network

• Other L4-7 content

– Lacks networking breadth for traffic

management

• Doesn’t support wide set of protocols,

tunneling, encapsulation

Istio

– Large compute footprint

• Istio - 13 Containers

• Sidecar container per service

Clover Clovisor

Clovisor

Hooks to

OpenTracing,

Jaeger

– Leverages eBPF

– Installed on k8s cluster nodes

Clovisor: Network Tracing… the
Cloud Native Way

1. Cloud Native:

a) Cloud Provider Independent
• Bare-metal servers, GKE, EKS…etc

b) CNI Plugin Agnostic
• All CNI plugins should work unless such plugin does kernel bypass

c) CPU Architecture Independent
• Any architecture supported by Linux (x86, ARM…etc), code (kernel

versions 4.14 and 4.15 currently)

2. Implemented with Cloud Native Design Methodologies:

a) Config Decoupled from Compute
• Config store in backing store or through environment variables

b) Relatively Stateless
• TCP connection/session tracking only dynamic states

c) Scale-out Architecture
• Pod monitoring partitioning via election from datastore

• DaemonSet —- linearly scale on each node in cluster

visor

3. In-depth Integration with Cloud

Native Ecosystem Projects:

a) Built-in Kubernetes Client
• Monitoring k8s pod states

b) Integrate with CNCF Collector

Projects
• OpenTracing to Jaeger, metrics to

Prometheus

Clovisor Architecture

• Lightweight, low latency network
tracing module

• Utilizes IOVisor (bcc, gobpf) with
eBPF to insert bytecode in Linux
kernel to examine packets from
both ingress / egress direction of
a k8s pod

• In cluster client to automate process
of monitoring and service port /
protocol info

• Stream trace / stats / metrics / logs to
respective tracer / collector modules

Clovisor Demo

• Configure monitoring labels
(namespace:label-key:label-value)

• In this case: “default” namespace, key:
“app”, value: “proxy”

• Start Clovisor (on node, verify if the tc filter
is created for device)

• curl www.cnn.com with http-proxy service
port (3456)

• curl www.google.com with http-proxy service
port (3456)

• Check Jaeger UI to verify traces written/sent

Visibility Use-Cases

• Easily pinpoint issues with individual services

• Integrate into CI to determine success/failure of jobs

• Monitor infrastructure in operations to determine system health

• Characterize the composition of traffic for content delivery or security

• Leverage to automate orchestration or zero-tech provisioning

Integrating & Validating

Jmeter Validation (1-2)

Emulated Clients• Jmeter is a mature L4-7 testing open source project

– HTTP client emulation for functional/performance validation

– Determine max session/connection rates, connection

capacity, etc.

• Clover created a Jmeter service for use within k8s

– Uses Jmeter master/slave approach

– Master as a single pod deployment may be used

– Jmeter slaves can be added for additional scale

• Master <-> slave communication only works outside of mesh

– Detailed test plan creation, test control and result collection

– Integrated into clover-system in CLI, UI and clover-

controller

$ cloverctl create testplan –f jmeter.yaml

$ cloverctl start testplan

$ cloverctl start testplan –s <slave count>

$ cloverctl get testresult –r log

$ cloverctl get testresult –r results

Jmeter Validation (2-2)

clover-jmeter-slave

Emulated Clients

clover-jmeter-master

• Validate infrastructure including visibility tools, ingress

controller, sample app

• Facilitate CI jobs

• Configure clover-server(s) with resources including URL

routes and files of varying sizes

Jmeter Test Plan
Creation

• Clover Jmeter yaml abstracts test

plan XML

• Specify simple parameters:

– # threads (users)

– Loops

– URL List

• Name (for results)

• URL (with port and URI)

• Method (GET, POST, …)

• User-agent HTTP header

jmeter.yaml

Jmeter Results

$ cloverctl create testplan –f jmeter.yaml

$ cloverctl start testplan

$ cloverctl get testresult –r results

Setup Jenkins for CI

• Setup Jenkins within k8s

Deployment yaml

Load Balancer service yaml

(expose in GKE)

NodePort service yaml

Integrate and Validate Demo

• Python script uses clover-controller

REST interface:

– Clear visibility

– Create jmeter testplan

– Start jmeter testplan

– Get visibility stats

• PASS/FAIL from expected requests sent

by jmeter checked from visibility

• Set exit status in script for Jenkins job

success/failure

Get visibility

stats

clover-controller

clover visibility

UI

CI

integrate_validate

job

clover-jmeter

Inspect stats

in real-time

Clover Server
Instrumentation

• clover-server

– Endpoint to terminate traffic for end-to-end validation

through network services

– Nginx based server

• gRPC interface to reconfigure:

– Setup various paths, listening port, etc.

• Nginx Upload module used for file upload with good

performance $ cloverctl set server –f server.yaml

Configure
Listening port

Deployment name

Site root/index

Path URLs

Move uploaded

files to paths

Deploying & Managing Services, Infrastructure

Spinnaker Introduction

• Overview

– Construct and manage continuous

delivery workflows

– View/manage cloud resources

– Pipeline-based engine

• Stages

– A stage in Spinnaker is an atomic

building block for a pipeline

• Pipelines

– Support various deployment strategies: blue/green, canary…

– Deploy to various clouds

– Execution manually or based on triggers

– Stages can be executed sequentially or in parallel

Spinnaker – Stage Types

• Pipeline

– allow pipeline daisy-chaining

• Scale (Manifest)

– increase k8s replicas

• Script

– run a script (instead of Jenkins option)

• Undo Rollout (Manifest)

– go back to a prior revision

• Find Artifact From Execution
– promote artifacts between

executions

• Find Artifacts From Resource
– find image from k8s resource

• Jenkins
– run Jenkins jobs

• Manual Judgment
– prompts user before continuing

• Wait

– introduce delay in pipeline

• Webhook

– execute REST call

• Bake (Manifest)
– deploy Helm charts (alpha)

• Check Preconditions
– check environment

• Delete (Manifest)
– delete k8s resources

• Deploy (Manfifest)
– deploy k8s based on yaml

Spinnaker – Pipeline Triggers

Trigger Spinnaker pipelines from many different events including:

Jenkins, Git, Docker Registry or other Spinnaker pipelines

Spinnaker – Common Software
Deployment Strategies

• Blue/Green
• Two identical environments – ex. green in production

• Release new version of services in blue and validate

• Revert to green if issues exist

• A/B Testing
• Support multiple versions simultaneously to compare variations/versions

• Canary
• Push new code to small group of users to evaluate incremental changes

• Early warning system for detecting problems

• Employ ingress network services: load balancers, proxies and/or service
meshes (ex. Istio) to support

Cloud-Native CI/CD with
Spinnaker - Demo

OPNFV Bare-

Metal Pod

• Spinnaker can deploy to multiple cloud

providers

– Including Kubernetes, GKE

– Openstack

• Pipelines are used to control flow from

commit/build/test to bake and deploy in

‘production’

• CI validation scripts are used to determine if

individual services and overall use-cases are

healthy

Long-Running

(lf-gke)

Development

(clover-gke)

Expose

UI/API

PASS CI

DEPLOY

DEPLOY

DEPLOY

FAIL

ROLLBACK

(CANARY)

Clover Spinnaker Sample-App

sample-app

local docker

build

Job monitor-

git

Developer

Github

Pubic Repo

Use Jenkins git

plugin and setup

Polling Job

LF-GKE

Change Code

Or

Add Git Tag

Pipeline

Trigger

Poll for Jenkins Job

monitor-git

Run Jenkins Job

build-sample-app

Job

build-sample-app

Push to

DockerHub

1

2 3

4

5

Run rest of pipeline

in Google demo6

OPNFV CI/CD with Spinnaker (1-2)

local docker

build & push

to dockerHub

Developer

Github

Pubic Repo

Change Code

Or

Add Git Tag

Job

build-project-app

Push to

DockerHub

1
2 3

4

Gerrit trigger

jenkins

Opnfv Gerrit

Opnfv

Jenkins

Run job

Pipeline

Trigger

Poll for Jenkins Job

build-project-app

5

6

OPNFV CI/CD with Spinnaker (2-2)

local docker

build & push

to dockerHub

Developer

Github

Pubic Repo

Change Code

Or

Add Git Tag

Job

build-project-app

Push to

DockerHub

1
2 3

4

Gerrit trigger

jenkins

Opnfv Gerrit

Opnfv

Jenkins

Run job

Pipeline

Trigger

Monitor docker hub
5

6

Summary

Take-Aways

Segmenting &
Instrumenting
Microservices

• Validation tools required in
CI/CD pipeline stage
acceptable

• Employ visibility in CI logic

Managing &
Controlling

Traffic

Debugging &
Monitoring

Integrating &
Validating

Deploying &
Managing
Services,

Infrastructure
Continuously

• Meshes allow services

to be delivered with

cloud-native CD

principles

• Ideal for control-plane

and REST services

• LFN projects can be packaged in flexible

ways if delivered as microservices in k8s
– Test projects, ONAP, OS admin services, etc.

• Cloud-native visibility helps

developers pinpoint issues

and operators manage

infrastructure

• Spinnaker can help
manage complex CD
pipelines across clouds

• Flexible integrations with
Jenkins, DockerHub,
Git, etc. allow CI and CD
to be combined

Clover Project
Info

• Project Wiki

– https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home

• Slack Channel

– #clover-project

• Github Repo

– https://github.com/opnfv/clover

https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home
https://github.com/opnfv/clover

Appendix

Cloud Native & OPNFV Test Projects

Yardstick Functest Dovetail
Performance
Framework

Bottlenecks

Bottleneck
Identification

Compliance
Verification

Functional
Validation

Storperf

Storage
Performance

Doctor

Fault Analysis

VSPERF/
NFVBench

Data-Plane
Performance

• Consider cloud native for OPNFV
test projects

– Package as micro-services

– Many are already containerized
• Functest divided into 8+

– Add gRPC or REST server
interfaces

– Make actions more atomic within
each

– Orchestrate system level tests
using different combinations of
services/actions

– Deploy all OPNFV test services in
a single manifest potentially

– Use tool-chains such as Spinnaker
for CI/CD

– Installer projects are also
considering cloud native for some
services

Client

opnfv-test-

controller

External Control (CLI and/or UI)

Istio Control-Plane Components

IOVisor & eBPF

• eBPF:

• Inject bytecodes to kernel trace points /
probes

• Event driven model

• Networking: tc
• Utilizes Linux tc (traffic control) to inject bytecode

on ingress and egress direction of a network
interface

• Verifier / JIT (just-in-time compiler)
• Verifier ensures bytecode does NOT crash kernel

• IOVisor bcc:

• Ease of eBPF Development
• Helper functions, kernel API wrappers…etc

• Dynamic Validation and Compilation
• Userspace eBPF code written in ‘C’ is dynamically verified (static

analysis) and compiled

• gobpf
• Golang interface for userspace code —- more performant than Python

Integrate and Validate Demo

