September 25 - 27, 2018 Amsterdam, The Netherlands

OMS

EUROPE

OPEN NETWORKING // Integrate, Automate, Accelerate

September 25 - 27, 2018 Amsterdam, The Netherlands

Delivering Network Services using Cloud Native Methodology

Eddie Arrage Wenjing Chu Futurewei Technologies Inc.

- Cloud Native Concepts/Methodology (10 min)
- Segmenting & Instrumenting Microservices (15 min)
 - Instrumentation
 - Example in Clover
- Managing & Controlling Traffic (20 min)
 - Service Meshes / Istio
 - Mesh Visibility Tools
 - Mesh Traffic Management
 - Augmenting Meshes

Debugging & Monitoring (25 min)

- Visibility/Observability Infrastructure
- Introduction to Clovisor
- Integrating & Validating (10 min)
 - L7 Jmeter validation
 - Jenkins integration
- Deploying & Managing Services, Infrastructure (15min)
 - Introduction to Spinnaker CI/CD

Cloud Native

• Benefits:

- Portable
- Scalable
- Ephemeral
- Accessible
- Flexible

- Microservice oriented

kubernetes

 Dynamically managed (Kubernetes)

- Containerized

Application / Network Co-Existence

- App evolution to microservices
 - Develop, debug and manage individual Lego blocks
- App developers want abstracted network
 - Usually to support web/REST oriented services
 - Example in LFN: many ONAP services have REST interface
 - Ideal for control-plane services
 - Network management model needs to fit paradigm
- Operators need to manage network services with cloud-native constructs
 - Bridge divide between built-in networking (Kubernetes, service meshes) and apps
 - Example: Google Istio as a service cloud offering
 - Support traffic management for CI/CD precepts: canary, blue/green, etc.

Cloud Native / Microservice Challenges

- Microservice sprawl
 - Debug difficult without tools for visibility and traceability of entire system

- Validation difficult as developers need to test system but might only own one service
 - Integrated testing and ease of system deployment

- Currently CI/CD pipeline in most LFN projects largely stops at CI level
 - Need to manage deployment pipelines
 - Support traffic management for cloud native

- Traditional operators need to consider how to offer compelling cloud services
 - Control traffic in/out of containerized environments
 - Network components for configurable ingress with security

Cloud Native Methodology

Segmenting & Instrumenting **Microservices** Managing & Deploying & modsecurity ٢ **Controlling Traffic** \mathfrak{B} Managing Spinnaker Services, Infrastructure **Continuously Yardstick Debugging &** Integrating & OPNFV Luci Monitoring Validating **lete**

GRPC {REST }

September 25 - 27, 2018 Amsterdam, The Netherlands

Segmenting & Instrumenting Microservices

Microservices

Monolithic App

 Break down into smaller chunks

- Microservice architecture puts functionality into separate services:
 - Iterative development
 - Division of labor
 - Reduce single point of failure
 - Language/deployment flexibility
 - Build different apps using subsets of services
 - Operations stakeholders are able to manage and upgrade components more easily

Microservice Instrumentation

- gRPC
 - Open-source RPC framework
 - Client/server
 - Bindings for most languages
 - Frequent configuration

ConfigMaps

 \mathfrak{B}

- Manage/inject app configuration
- Kubernetes resource
- Keep containers agnostic

redis

- Shared Data Stores
 - Exchange network data, state management

Microservice Clover Example

- Clover-System Tools
 - cloverctl CLI interface
 - clover-controller in-cluster message routing and UI dashboard
 - clover-jmeter L4-7 clientemulation for CI/CD, validation

Sample Network Services

- Security: IDS, WAF
- L4-7: proxy, load balancer...
- Combine in various CNFs
- Employ Linux services
- Implement gRPC server for instrumentation
- Redis data-store to share packet, security event data

\$ python -m grpc_tools.protoc -I./ --python_out=. --grpc_python_out=. snort.proto

Generate gRPC code

message SnortReply {
 string message = 1;

string dest_port = 2; string dest_ip = 3; string src port = 4;

string src_ip = 5; string msg = 6; string content = 7; string sid = 8; string rev = 9;

September 25 - 27, 2018 Amsterdam, The Netherlands

Managing & Controlling Traffic

Service Meshes

- Dedicated layer for managing service communication
 - Intra-service within cluster
 - External traffic entering cluster (ingress)
 - Internal traffic leaving cluster (egress)
 - Fit best for control-plane services
 - Examples: Istio, Conduit, Apache ServiceComb

- 'Sidecar' injected as a service proxy in each pod
- Allows for more advanced routing than native k8s networking

Istio Service Mesh

- Traffic Management
 - Load balancing
 - Request routing
 - Continuous deployment
 - Canary
 - A/B validation
 - Fault injection
 - Mirroring
 - Secure communication

- Visibility Built-in
 - Monitoring, tracing, logging

Istio Install

• Current release at 1.0.2,

• Works best on k8s v1.9+ (with mutating webhook)

\$ curl -L https://git.io/getLatestIstio | sh -

\$ cd istio-1.0.2

\$ export PATH=\$PWD/bin:\$PATH

\$ kubect1 apply -f install/kubernetes/istio-demo.yaml

Install

\$ kubect1 label namespace <namespace> istio-injection=enabled
\$ kubect1 create -n <namespace> -f <your-app-spec>.yaml

\$ istioctl kube-inject -f <your-app-spec>.yaml | kubectl apply -f -

Setup

 automatic sidecar (namespace) sidecar injection

 Manual sidecar injection

Install Istio and SDC sample with Clover

\$ docker pull opnfv/clover:latest

- \$ sudo docker run --rm \
 - -v ~/.kube/config:/root/.kube/config \

opnfv/clover \

/bin/bash -c '/home/opnfv/repos/clover/samples/scenarios/deploy.sh'

Network Service Catalog

Kubernetes Deployment App Name Service Docker Image Ports HTTP: 9180 GRPC: 50054 Proxy proxy-access-control clover-ns-nginx-proxy HTTP: 9180 GRPC: 50054 Load Balancers app: http-lb version: httpclover-ns-nginx-lb lb-v1 version: http-lb-v2 Intrusion Detection snort-ids clover-ns-snort-ids HTTP: 80, Redis: 6379 System (IDS) GRPC: 50052 (config) GRPC: 50054 (alerts) Servers HTTP: 9180 GRPC: 50054 clover-server1 cloverclover-ns-nginx-server server2 clover-server3 clover-server4 cloverserver5

opnfv/clover-ns-nginx-proxy ☆

Image: Complexity of the second second

Q Search

PUBLIC REPOSITORY

opnfv/clover-ns-nginx-server ☆

OPNFV Docker Hub Images

- Clover developing set of sample L7 network services for use in k8s and meshes
- New in Clover Gambia release: modsecurity (Web Application Firewall + Apache web server)

k85

⊛

Traffic within Mesh

- Inject jmeter into mesh
- Send traffic within cluster/mesh
 - Service Delivery Controller
 (SDC) Sample CNF

control-agent

G http-lb-v1

G http-lb-v2

configuration

clover

server1

clover-

server2

clover-

server3

cloverserver4

cloverserver5

GRPC

External Traffic into Mesh

×

Istio Ingress

 LB at the edge of mesh receiving incoming/outgoing connections

Istio Request Routing (1-2)

- Content-based steering to determine destination of request
- Support CI/CD precepts with canary versions

Istio Request Routing (2-2)

- Flexible request routing with Virtual Service
 - Match traffic and route to back end service
 - Match based on URI, HTTP headers (identity, user-agent)
 - Control with 'weight' field
- Ideal to validate REST based APIs and services
 - Support CI/CD deployment workflows

URLs to domain www.sdc.com Match URI prefix '/test' to

clover-server2

Match HTTP header user-agent 'chrome' to clover-server3

Everything else to clover-server1

apiVersion: networking.istio.io/vlalpha3 kind: VirtualService netadata: name: directserver spec: hosts: - "www.sdc.com" http: - match: - uri: prefix: /test route: destination: port: number: 9180 host: clover-server2 - match: - headers: user-agent: exact: chrome route: destination: port: number: 9180 host: clover-server3 - route: destination: port: number: 9180

host: clover-server1

Istio Mirroring

- Mirroring or Shadowing
 - Sends a copy of live traffic to a mirrored service
 - Add an entry to Virtual Service resource under any route rule

	clover-jmeter-master: clover-server1.default.sv	/c.cluster.local:91	80/*	
	3 Spans clover-jmeter	master (1) clover	-server1 (1) snort-ids (1)	
Se	rvice & Operation	Oms	0.43ms 0.86r	
	clover-jmeter-master clover-server1.default.svc.cluster.local:9180/* Clover-server1 clover-server1.default.svc.cluster.local:9180/*			
	snort-ids clover-server1.default.svc.cluster.local:9160/*	clover-server1.	default.svc.cluster.local:9180/*	
		component node_id	"proxy" "sidecar~10.46.0.16~snort-ids-648cd99d98-csqpr.default~default.svc.cluster.local"	
		guid:x-request-id http.url http.method	"c030a4e9-f99e-9ed2-898c-bed0cb46cd72" "http://www.sdc.com-shadow/" "GET"	
		downstream_cluster user_agent	"safari"	Any traffic to clover-
		http.protocol request_size upstream cluster	"HTTP/1.1" "0" "inbound 80 snort-ids.default.svc.cluster.local"	server1 mirrored to
		http status_code	Indound 80 Snort-105.detault.Svc.cluster.local	snort-ids

apiVersion: networking.istio.io/vlalpha3 kind: VirtualService metadata: name: directserver spec: hosts: - "www.sdc.com" http: - match: - uri: prefix: /test route: destination: port: number: 9180 host: clover-server2 - match: - headers: user-agent: exact: chrome route: destination: port: number: 9180 host: clover-server3 - route: - destination: port: number: 9180 host: clover-server1 mirror: host: snort-ids

Istio Fault Injection & Circuit Breaking

- Fault Injection
 - Inject faults to test the resiliency of your application
 - End-to-end failure recovery capability of the application as a whole
 - Delay: timing failures
 - Mimic network latency, or an overloaded upstream service
- Circuit Breaking
 - Ejected from the load balancing pool when thresholds are exceeded
 - number of health check failures or number of conditions such as connection and request limits
- Useful for LFN projects that are planning or using cascading REST services

- Abort: crash failures
 - mimic failures in upstream services (HTTP error codes)

Istio - Control Egress Traffic

- Default Istio-enabled services are unable to access URLs outside of the cluster
 - Pods use iptables to transparently redirect all outbound traffic to the sidecar proxy, which only handles intra-cluster destination

Send traffic outside of mesh to 'www.sdc.com'

(assuming this is a valid domain in DNS)

Istio Mesh - Visibility Tools

OPEN NETWORKING // Integrate, Automate, Accelerate

Jaeger: Tracing

Prometheus: Monitoring

- Good raw data
 - Individual traces in Jaeger
 - Metrics list in Prometheus •
- But difficult to get insight of entire • system (aggregate, top-level)

Augmenting Mesh/Kubernetes Ingress

September 25 - 27, 2018 Amsterdam, The Netherlands

Debugging & Monitoring

Clover Visibility

EUROPE OPEN NETWORKING // Integrate, Automate, Accelerate

- Analyzes data from CNCF observability tools to provide abstraction
 - Gathers data and analyzes using Spark
- 4 core components (clover-system)
 - clover-collector (within k8s)
 - clover-controller (within k8s)
 - cloverctl (external)
 - clover UI (external)
- User interacts with cloverctl or UI
 - CLI/UI use same REST API from clovercontroller service
 - Chooses services to track
 - Outputs analyzed data to Redis

Clover Visibility Initialization (1-2)

- Install Istio
- Install clover-system components within k8s
- Expose clover-controller using LB or NodePort k8s service resource
- Gambia release will have CLI / script installation

\$ cloverctl init visibility
\$ cloverctl start visibility –f visibility.yaml
\$ cloverctl clear visibility

- Use CLI to initialize visibility
 - Create traces, spans, metrics Cassandra schemas
- Start visibility
 - Collector begins gathering data from Jaeger,
 Prometheus
- Clear visibility
 - Truncates tables

Clover Visibility Initialization (2-2)

- Set sampling interval for collector
- Tracing/monitoring k8s DNS names
- Tracing/monitoring listening ports (Jaeger/Prometheus)

\$ cloverctl start visibility –f visibility.yaml

visibility.yaml

sample_interval: "10" t_host: tracing.istio-system t_port: "80" m_port: "9090" m_host: prometheus.istio-system

- Configure tracing services that visibility will analyze
- Configure metric prefixes/suffixes to analyze

\$ cloverctl set visibility -f metrics.yaml

metrics.yaml

Clover Visibility Stats (1-3)

snort-id	ls http-lb	istio-policy	jaeger-query	istio-mixer	clover-jmeter-master	istio-ingressgateway	istio-telemetry	clover-server5	clover-server4
proxy-a	iccess-cont	rol clover-s	server1 clove	r-server3 c	lover-server2				
Visibility Services									
1. clover_server3									
2. clover_server2									
3. clover_server1									
4.	4. proxy_access_control								

 Tracing Metrics

 Average Response Times
 System Counts

 SDC Proxy: 6ms
 Traces: 16

 Spans: 146
 Spans: 146

- Analyze trace data at aggregate level
 - Calculate average response time for various services
- Break down data in various ways
 - Per URL, Per Service/URL, more TBA in Gambia release

Clover Visibility Stats (2-3)

chrome: 33.0 %

User-Agent Percentage

java1: 33.0 %

-: 1.0 %

Per URL / HTTP Status Codes (all services)

- Find issues with REST services such as service HTTP status codes being returned
- Validate service mesh traffic management policies such as request routing by user-agent (ex. mobile vs desktop)

Per Service/URL Counts

Clover Visibility Stats (3-3)

•	Characterize the
	composition of the traffic

		HTTP Details
User-Agents	Request URLs	Status Codes
		http://snort-ids/
		http://clover-server1:9180/
		http://clover-server3:9180/
		http://clover-server2:9180/
		http://http-lb:9180/
		http://mixer/istio.mixer.v1.Mixer/Check
		http://proxy-access-control.default:9180/

	Monitoring Metrics	
	envoy_cluster_inbound_9180clover_server3_default_svc_cluster_local_upstream_rq_2xx	4558
	envoy_cluster_inbound_9180proxy_access_control_default_svc_cluster_local_upstream_rq_2xx	12109
	envoy_cluster_outbound_9180clover_server1_default_svc_cluster_local_upstream_rq_2xx	5987
	envoy_cluster_outbound_9180clover_server1_default_svc_cluster_local_upstream_cx_active	8
	envoy_cluster_outbound_9180clover_server2_default_svc_cluster_local_upstream_rq_2xx	5751
	envoy_cluster_inbound_9180clover_server1_default_svc_cluster_local_upstream_rq_2xx	6159
	envoy_cluster_outbound_9180proxy_access_control_default_svc_cluster_local_upstream_rq_2xx	451
nse	envoy_cluster_inbound_9180clover_server2_default_svc_cluster_local_upstream_rq_2xx	6121
1150	envoy_cluster_outbound_9180clover_server3_default_svc_cluster_local_upstream_rq_2xx	4177
	envoy_cluster_inbound_9180clover_server1_default_svc_cluster_local_upstream_cx_active	0
	envoy_cluster_outbound_9180clover_server2_default_svc_cluster_local_upstream_cx_active	10
	envoy_cluster_inbound_9180proxy_access_control_default_svc_cluster_local_upstream_cx_active	0
	envoy_cluster_outbound_9180proxy_access_control_default_svc_cluster_local_upstream_cx_active	7
	envoy_cluster_outbound_9180clover_server3_default_svc_cluster_local_upstream_cx_active	11
	envoy_cluster_inbound_9180clover_server3_default_svc_cluster_local_upstream_cx_active	0
	envoy_cluster_inbound_9180clover_server2_default_svc_cluster_local_upstream_cx_active	0

 Output service request/response rates over time

Clover Clovisor

Istio

- Large compute footprint
 - Istio 13 Containers
 - Sidecar container per service
- Lacks visibility for:
 - L3 network
 - Other L4-7 content
- Lacks networking breadth for traffic management
 - Doesn't support wide set of protocols, tunneling, encapsulation

Hooks to **OpenTracing**, Jaeger

- Leverages eBPF
- Installed on k8s cluster nodes

Clovisor: Network Tracing... the Cloud Native Way

1. Cloud Native:

ARM

×86

- a) Cloud Provider Independent
 - Bare-metal servers, GKE, EKS...etc
- b) CNI Plugin Agnostic
 - All CNI plugins should work unless such plugin does kernel bypass
- c) CPU Architecture Independent
 - Any architecture supported by Linux (x86, ARM...etc), code (kernel versions 4.14 and 4.15 currently)
- 2. Implemented with Cloud Native Design Methodologies:
 - a) Config Decoupled from Compute
 - Config store in backing store or through environment variables
 - b) Relatively Stateless
 - TCP connection/session tracking only dynamic states
 - c) Scale-out Architecture
 - Pod monitoring partitioning via election from datastore
 - DaemonSet —- linearly scale on each node in cluster

- 3. <u>In-depth Integration with Cloud</u> <u>Native Ecosystem Projects:</u>
 - a) Built-in Kubernetes Client
 - Monitoring k8s pod states
 - b) Integrate with CNCF Collector Projects
 - OpenTracing to Jaeger, metrics to Prometheus

Clovisor Architecture

- Lightweight, low latency network tracing module
- Utilizes IOVisor (bcc, gobpf) with eBPF to insert bytecode in Linux kernel to examine packets from both ingress / egress direction of a k8s pod
- In cluster client to automate process of monitoring and service port / protocol info
- Stream trace / stats / metrics / logs to respective tracer / collector modules

EUROPE // OPEN NETWORKING Integrate, Automate, Accelerate

Clovisor Demo

- Configure monitoring labels (namespace:label-key:label-value)
- In this case: "default" namespace, key: "app", value: "proxy"
- Start Clovisor (on node, verify if the tc filter is created for device)
- curl <u>www.cnn.com</u> with http-proxy service port (3456)
- curl <u>www.google.com</u> with http-proxy service port (3456)
- Check Jaeger UI to verify traces written/sent

Visibility Use-Cases

- Easily pinpoint issues with individual services
- Integrate into CI to determine success/failure of jobs
- Monitor infrastructure in operations to determine system health
- Characterize the composition of traffic for content delivery or security
- Leverage to automate orchestration or zero-tech provisioning

September 25 - 27, 2018 Amsterdam, The Netherlands

Integrating & Validating

Jmeter Validation (1-2)

- Jmeter is a mature L4-7 testing open source project
 - HTTP client emulation for functional/performance validation
 - Determine max session/connection rates, connection capacity, etc.
- Clover created a Jmeter service for use within k8s
 - Uses Jmeter master/slave approach
 - Master as a single pod deployment may be used
 - Jmeter slaves can be added for additional scale
 - Master <-> slave communication only works outside of mesh
 - Detailed test plan creation, test control and result collection
 - Integrated into clover-system in CLI, UI and clovercontroller

\$ cloverctl create testplan –f jmeter.yaml
\$ cloverctl start testplan
\$ cloverctl start testplan –s <slave count>
\$ cloverctl get testresult –r log
\$ cloverctl get testresult –r results

k85

\$

Jmeter Validation (2-2)

 Configure clover-server(s) with resources including URL routes and files of varying sizes CONS EUROPE OPEN NETWORKING // Integrate, Automate, Accelerate

Jmeter Test Plan Creation

- Clover Jmeter yaml abstracts test plan XML
- Specify simple parameters:
 - # threads (users)
 - Loops
 - URL List
 - Name (for results)
 - URL (with port and URI)
 - Method (GET, POST, ...)
 - User-agent HTTP header

jmeter.yaml

- load_spec: num_threads: 20 loops: 2 ramp_time: 60 url_list: - name: url1 url: http://www.sdc.com:80/test/ method: GET user-agent: javal - name: url2 url: http://www.sdc.com:80/ method: GET user-agent: chrome user-agent: chrome
 - name: url3 url: http://www.sdc.com:80/phpmyadmin method: GET user-agent: robot

\$ cloverctl create testplan –f jmeter.yaml
\$ cloverctl start testplan
\$ cloverctl get testresult –r results

Jmeter Results

153/388803608,2,url3,404,Not Found,ThreadGroup 1-19,text,Talse,32/,0,1,1,2,0,0 1537388803611,3,url1,200,0K,ThreadGroup 1-19,text,true,843,0,1,1,3,0,0 1537388803615,2,url2,200,0K,ThreadGroup 1-19,text,true,843,0,1,1,2,0,0 1537388803618,2,url3,404,Not Found,ThreadGroup 1-19,text,false,327,0,1,1,2,0,0 1537388806602,4,url1,200,0K,ThreadGroup 1-20,text,true,843,0,1,1,4,0,0 1537388806607,3,url2,200,0K,ThreadGroup 1-20,text,true,843,0,1,1,3,0,0 1537388806610,2,url3,404,Not Found,ThreadGroup 1-20,text,false,327,0,1,1,2,0,0 1537388806613,2,url3,404,Not Found,ThreadGroup 1-20,text,false,327,0,1,1,2,0,0 1537388806613,2,url,200,0K,ThreadGroup 1-20,text,true,843,0,1,1,2,0,0 1537388806616,2,url2,200,0K,ThreadGroup 1-20,text,true,843,0,1,1,2,0,0 OPEN NETWORKING // Integrate, Automate, Accelerate

Setup Jenkins for Cl

• Setup Jenkins within k8s

apiVersion: extensions/vlbetal kind: Deployment metadata: name: jenkins spec: replicas: 1 template: metadata: labels: app: jenkins spec: containers: - name: jenkins image: jenkins/jenkins:lts ports: - containerPort: 8080

Deployment yaml

kind: Service apiVersion: vl metadata: name: jenkins spec: selector: app: jenkins ports: - name: ui protocol: TCP port: 8080 targetPort: 8080 - name: discover protocol: TCP port: 50000 targetPort: 50000 type: LoadBalancer

ind: Service
apiVersion: v1
metadata:
name: jenkins
spec:
selector:
 app: jenkins
ports:
 name: http
 protocol: TCP
 port: 8080
type: NodePort

Load Balancer service yaml (expose in GKE)

→ C (i) Not secure | 10.145.71.21:32062

👰 Jenkins			
Jenkins >			
音 New Item			
🍓 People	All +		
Build History	S	w	Name \downarrow
🐡 Manage Jenkins		<u> 🍋</u>	integrate_validate
鵗 My Views	Icon: <u>S M</u> L		
🔦 Credentials			

NodePort service yaml

Integrate and Validate Demo

- Python script uses clover-controller REST interface:
 - Clear visibility
 - Create jmeter testplan
 - Start jmeter testplan
 - Get visibility stats
- PASS/FAIL from expected requests sent by jmeter checked from visibility
- Set exit status in script for Jenkins job success/failure

EUROPE OPEN NETWORKING // Integrate, Automate, Accelerate

Clover Server Instrumentation

🐏 🔍 Search

PUBLIC REPOSITORY

opnfv/clover-ns-nginx-server ☆

- clover-server
 - Endpoint to terminate traffic for end-to-end validation through network services
 - Nginx based server
- gRPC interface to reconfigure:
 - Setup various paths, listening port, etc.
- Nginx Upload module used for file upload with good performance

Listening port eployment name

Deployment name Site root/index

Path URLs

Move uploaded files to paths Configure

port	server_port: "9180"			
t name	server_name: "clover-server1"			
	<pre>site_root: "/var/www/html"</pre>			
index	<pre>site_index: index.html</pre>			
	upload_path_config: "/upload"			
	upload_path_test: "/upload_test"			
	locations:			
	- uri_match: "/test"			
RLs	directive: "try_files \$uri @default1"			
	path: "/test"			
	- uri_match: "/new"			
	directive: "try_files \$uri @default1"			
	path: "/new"			
baded	- uri_match: "/clover/clover"			
	directive: "try_files \$uri @default2"			
aths	<pre>path: "/clover/clover"</pre>			
	files:			
	 src_file: "/var/www/html/upload/000000001" 			
	<pre>dest_file: "var/www/html/test/touch.wav"</pre>			
	Coloriant octoon on foom on read			
	\$ cloverctl set server –f server.yaml			

September 25 - 27, 2018 Amsterdam, The Netherlands

Deploying & Managing Services, Infrastructure

Spinnaker Introduction

- Overview
 - Stages ٠ Construct and manage continuous delivery workflows A stage in Spinnaker is an atomic building block for a pipeline View/manage cloud resources — Pipeline-based engine _ Spinnaker Configuration Deploy to Dev Jenkins Cl Deploy to Stress (LF GKE) Run Script
 - Pipelines
 - Support various deployment strategies: blue/green, canary...
 - Deploy to various clouds
 - Execution manually or based on triggers
 - Stages can be executed sequentially or in parallel

Spinnaker – Stage Types

Bake (Manifest)

Bake (Manifest)

Bake a manifest (or multi-doc manifest set) using a template renderer such as Helm.

Check Preconditions

Checks for preconditions before continuing

Delete (Manifest)

Destroy a Kubernetes object created from a manifest.

Deploy (Manifest)

Pipeline

Pipeline Runs a pipeline

Scale (Manifest)

Scale a Kubernetes object created from a manifest.

Script

Wait

Runs a script

Undo Rollout (Manifest)

Rollback a manifest a target number of revisions.

Bake (Manifest)

EUROPE

OPEN NETWORKING //

•

Q

Q

٠

•

- deploy Helm charts (alpha)
- **Check Preconditions**
 - check environment
- Delete (Manifest)
 - delete k8s resources
- Deploy (Manfifest)
 - deploy k8s based on yaml

Pipeline

- allow pipeline daisy-chaining
- Scale (Manifest)
 - increase k8s replicas
- Script
 - run a script (instead of Jenkins option)
- Undo Rollout (Manifest)
 - go back to a prior revision

Find Artifact From Execution Q **Find Artifact From Execution** Find and bind an artifact from another execution Find Artifacts From Resource (Manifest) Finds artifacts from a Kubernetes resource. Jenkins

Runs a Jenkins job

Manual Judgment

Waits for user approval before continuing

Patch (Manifest)

Wait Waits a specified period of time Webhook Runs a Webhook job

Find Artifact From Execution

- promote artifacts between executions
- Find Artifacts From Resource •
 - find image from k8s resource
 - Jenkins

.

- run Jenkins jobs
- Manual Judgment
 - prompts user before continuing

Wait

•

- introduce delay in pipeline
- Webhook
 - execute REST call

Automated Triggers

Spinnaker – Pipeline Triggers

Jenkins▼Select...CRONGitJenkinsTravisPipelinePub/Sub

Webhook

Docker Registry

Туре	Jenkins Listens to a Jenkins job 			🛱 Remove trigger
Master	clover-gke-jenkins	*	2	
Job	simple_ci	Ŧ	3	
Property File 🛛				

Trigger Enabled

Trigger Spinnaker pipelines from many different events including: Jenkins, Git, Docker Registry or other Spinnaker pipelines

Spinnaker – Common Software Deployment Strategies

- Blue/Green
 - Two identical environments ex. green in production
 - Release new version of services in blue and validate
 - Revert to green if issues exist
- A/B Testing
 - Support multiple versions simultaneously to compare variations/versions
- Canary
 - Push new code to small group of users to evaluate incremental changes
 - Early warning system for detecting problems
- Employ ingress network services: load balancers, proxies and/or service meshes (ex. Istio) to support

Cloud-Native CI/CD with Spinnaker - Demo

- Spinnaker can deploy to multiple cloud providers
 - Including Kubernetes, GKE
 - Openstack
- Pipelines are used to control flow from commit/build/test to bake and deploy in 'production'
- CI validation scripts are used to determine if individual services and overall use-cases are healthy

6

Pipeline

Trigger

Spinnaker

Deploy to Canary Functional Tests of

Canary Deployment

Manual

Approval

Deploy to

Production

September 25 - 27, 2018 Amsterdam, The Netherlands

Summary

FUROPE **OPEN NETWORKING //** Integrate, Automate, Accelerate

Take-Aways

LFN projects can be packaged in flexible ٠ ways if delivered as microservices in k8s - Test projects, ONAP, OS admin services, etc.

- Spinnaker can help manage complex CD pipelines across clouds
- Flexible integrations with • Jenkins, DockerHub, Git, etc. allow CI and CD to be combined

- Meshes allow services to be delivered with cloud-native CD principles
- Ideal for control-plane and **REST** services

Cloud-native visibility helps developers pinpoint issues and operators manage infrastructure

Employ visibility in CI logic

acceptable

ONS EUROPE OPEN NETWORKING // Integrate, Automate, Accelerate

Clover Project Info

- Project Wiki
 - <u>https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home</u>
- Slack Channel
 - #clover-project
- Github Repo
 - <u>https://github.com/opnfv/clover</u>

September 25 - 27, 2018 Amsterdam, The Netherlands

Integrate, Automate, Accelerate

Appendix

Cloud Native & OPNFV Test Projects

OPEN NETWORKING // Integrate, Automate, Accelerate

- **Consider cloud native for OPNFV** test projects
 - Package as micro-services
 - Many are already containerized
 - Functest divided into 8+
 - Add gRPC or REST server interfaces
 - Make actions more atomic within each
 - Orchestrate system level tests using different combinations of services/actions
 - Deploy all OPNFV test services in _ a single manifest potentially
 - Use tool-chains such as Spinnaker for CI/CD
 - Installer projects are also _ considering cloud native for some services

Spinnaker

S Istio Control-Plane Components

EUROPE OPEN NETWORKING // Integrate, Automate, Accelerate

IOVisor & eBPF

• eBPF

Inject bytecodes to kernel trace points / probes

EUROPE

- Event driven model
- Networking: tc
 - Utilizes Linux tc (traffic control) to inject bytecode on ingress and egress direction of a network interface
- Verifier / JIT (just-in-time compiler)
 - Verifier ensures bytecode does NOT crash kernel
- IOVisor bcc:
 - Ease of eBPF Development
 - Helper functions, kernel API wrappers...etc
 - Dynamic Validation and Compilation
 - Userspace eBPF code written in 'C' is dynamically verified (static analysis) and compiled
 - gobpf
 - Golang interface for userspace code —- more performant than Python

Enhanced BPF

is in Linux

EUROPE OPEN NETWORKING // Integrate, Automate, Accelerate

Integrate and Validate Demo

mport requests mport sys

import time

CLOVER_CONTROLLER = 'http://10.145.71.21:30880' #CLOVER_CONTROLLER = 'http://clover-controller.clover-system' USER_COUNT = 4 EXPECTED_COUNT = 4 * 4

Clear visibility
clear_url = CLOVER_CONTROLLER + '/visibility/clear'
response = requests.get(clear_url)
print(response.text)
if response.status_code != 200:
 print("Failed to clear visibility")
 sys.exit(-1)

print("Failed to create testplan") sys.exit(-1)

Start Jmeter testplan

jmeter_start_url = CLOVER_CONTROLLER + '/jmeter/start'
response = requests.get(jmeter_start_url)
print(response.text)
if response.status_code != 200:
 print("Failed to start jmeter")
 sys.exit(-1)

time.sleep(80)

Get visibility trace count
get_stats_url = CLOVER_CONTROLLER + '/visibility/stats/toplevel'
response = requests.get(get_stats_url)
data = response.json()
print("Trace count: {}".format(data['trace_count']))
if response.status_code != 200:
 print("Failed to get visibility stats")
 sys.exit(-1)

else: print("Validation passed")