September 25 - 27, 2018 Amsterdam, The Netherlands

OPEN NETWORKING // Integrate, Automate, Accelerate

September 25 - 27, 2018 Amsterdam, The Netherlands

OPEN NETWORKING // Integrate, Automate, Accelerate

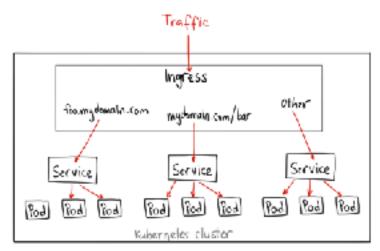
Traffic Management and Visibility Infrastructure for Rapid Microservice Delivery Eddie Arrage

Futurewei Technologies Inc

• Cloud Native Concepts (5 min)

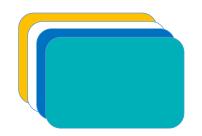
- Microservices
- Service Deployment Strategies
- Challenges

Traffic Management and Service Meshes (15 min)


- Service Meshes / Istio
- Mesh Traffic Management
- Mesh Visibility Tools

• Visibility/Observability Infrastructure Mesh/Non-Mesh (10 min)

• OPNFV Clover (+ Clovisor)


Cloud Native

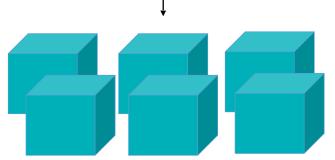
• Benefits:

- Portable
- Scalable
- Ephemeral
- Accessible
- Flexible

- Microservice oriented

docke

 Dynamically managed (Kubernetes)



- Containerized

Microservices

 Break down into smaller chunks

- Microservice architecture puts functionality into separate services:
 - Iterative development
 - Division of labor
 - Reduce single point of failure
 - Language/deployment flexibility
 - Build different apps using subsets of services
 - Operations stakeholders are able to manage and upgrade components more easily



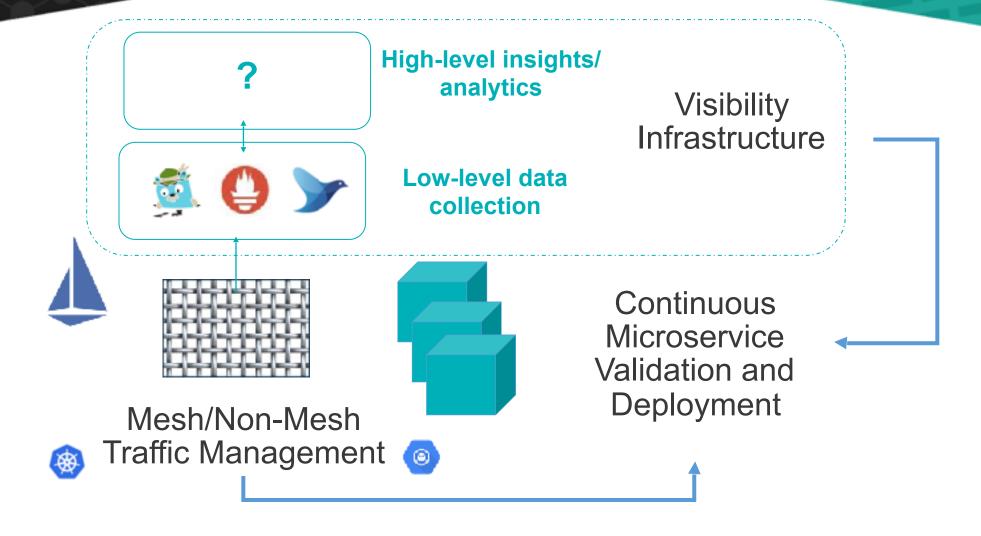
Microservice Validation & Deployment Strategies

- Blue/Green
 - Two identical environments of all microservices Example:
 - Green in production
 - Release new version of service(s) in blue and validate
 - Revert to green if issues exist or cut over to blue if not
- A/B Testing
 - Support multiple versions of microservice simultaneously to compare variations/versions
- Canary
 - Push new code to small group of users to evaluate incremental changes
 - Early warning system for detecting problems
- Employ ingress network services for traffic management: load balancers, proxies and/or service meshes to support

Cloud Native / Microservice Challenges

services

- Microservice sprawl
 - Debug difficult without tools for visibility and traceability of entire system



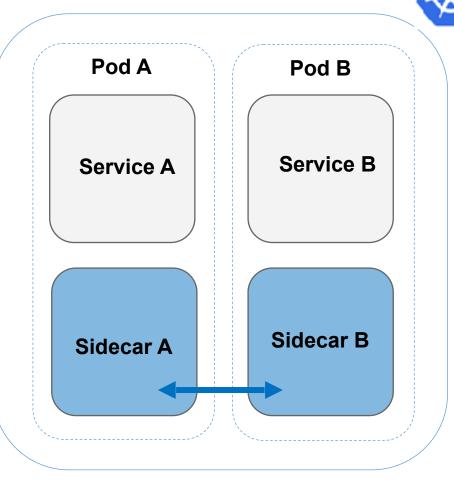
- Microservice validation and deployment strategies require integrated traffic management
 - Current CI/CD pipelines in LFN projects have not adopted consist framework/methodology for doing this

Cloud Native Traffic Management & Visibility

OPEN NETWORKING /

September 25 - 27, 2018 Amsterdam, The Netherlands

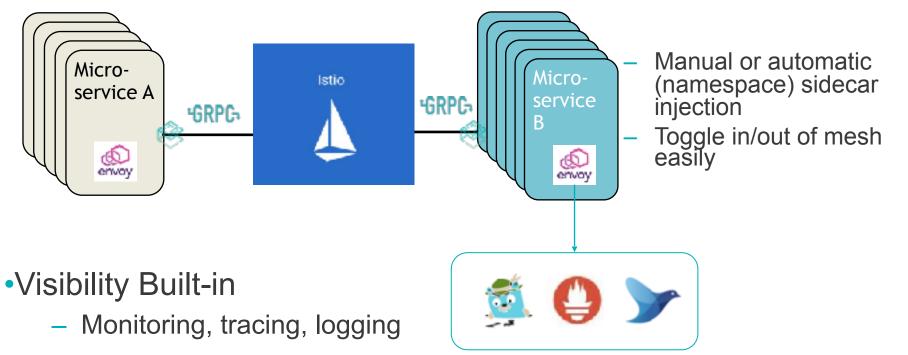
OPEN NETWORKING // Integrate, Automate, Accelerate


Traffic Management and Service Meshes

Service Meshes

- Dedicated layer for managing service communication
 - Intra-service within cluster
 - External traffic entering cluster (ingress)
 - Internal traffic leaving cluster (egress)
 - Fit best for control-plane services
 - Examples: Istio, Conduit, Apache ServiceComb

 - 'Sidecar' injected as a service proxy in each pod


 Allows for more advanced routing than native k8s networking

Istio Service Mesh

- Traffic Management
 - Load balancing
 - Request routing
 - Continuous deployment
 - Canary
 - A/B validation
 - Fault injection
 - Mirroring
 - Secure communication

- Proxy oriented to HTTP/gRPC
- mTLS (optional)

Istio Install

- Current release at 1.0.2,
- Works best on k8s v1.9+ (with mutating webhook)

\$ curl =L https://git.io/getLatestIstic | sh =

\$ cd islio-1.0.2

\$ export PATHESPND/bin:\$PATH

\$ kubect1 apply -f install/kubernetes/istic-demo.yan1

Install

\$ kubectl label namespace knamespace> istic-injection=enabled \$ kubectl create -n knamespace> -f kyour-app-spec>.yaml

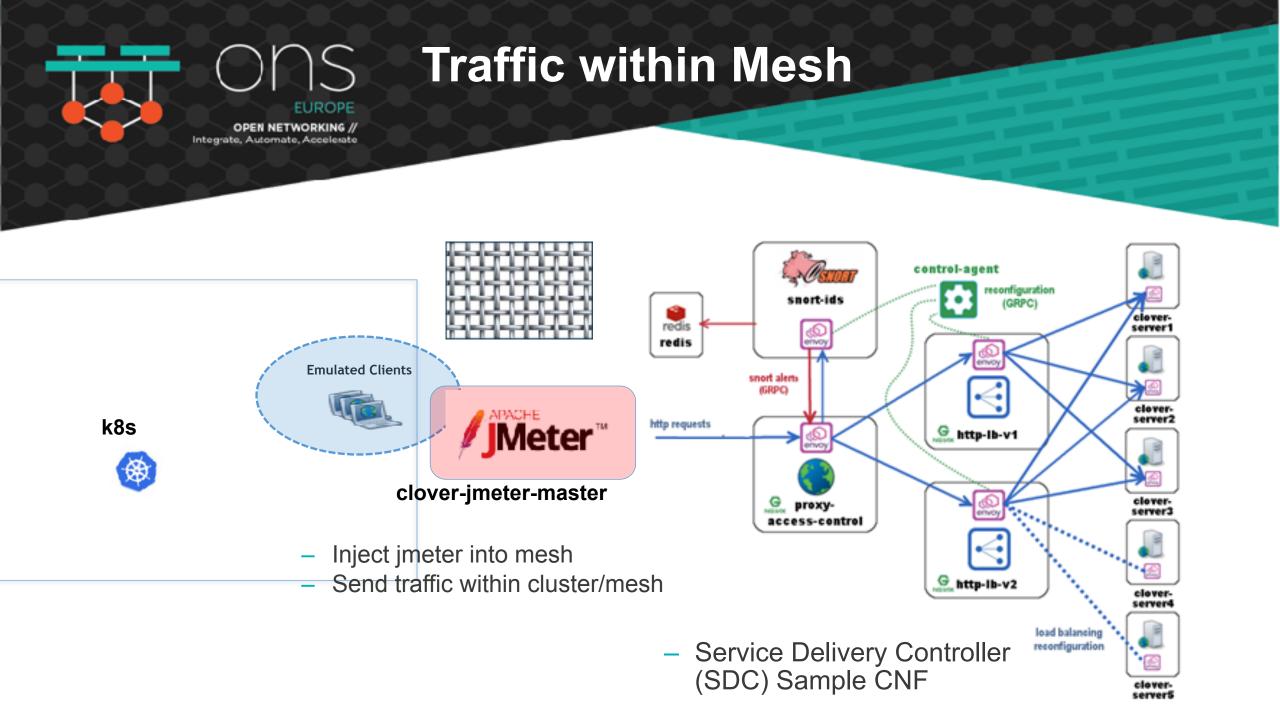
S isticct1 kube-inject -f <your-app-spec>.yam1 | kubect1 apply -f -

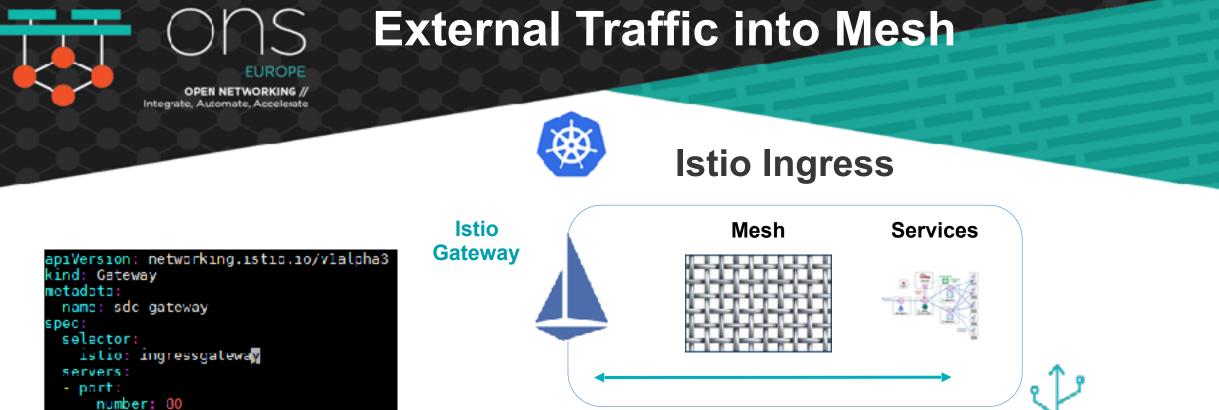
Setup

- automatic sidecar (namespace) sidecar injection
 - Manual sidecar injection

Install Istio and SDC sample with Clover

\$ docker pull opnfv/clover:latest
\$ sudo docker run --rm \
 -v ~/.kube/config:/root/.kube/config \
 opnfv/clover \
 /bin/bash -c '/home/opnfv/repos/clover/samples/scenarios/deploy.sh'

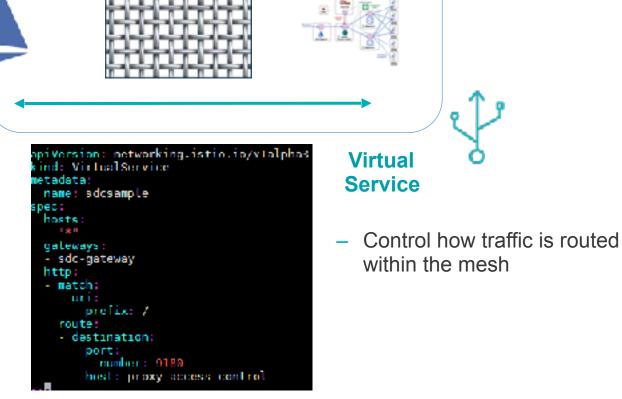

Network Service Catalog


Images

Service	Kubernetes Deployment App Name	Docker Image	Ports	Public reposition
Ргоху	proxy access control	clover ns nginx proxy	HTTP: 9180 GRPC: 50054	opnfv/clover-ns-nginx-proxy শ্ব 🐡 এ চললা
Load Balancers	app: http-lb version: http- lb-v1 version: http-lb-v2	clover-ns-nginx-lb	HTTP: 9180 GRPC: 50054	PUBLIC REPOSITORY opnfv/clover-ns-nginx-lb ☆
Intrusion Detection System (IDS)	snort ids	clover ns snort ids	HTTP: 80, Redis: 6379 GRPC: 50052 (config) GRPC: 50054 (alerts)	e South RUBLIC REPOSITORY opnfv/clover-ns-snort-ids ☆
Servers	clover-server1 clover- server2 clover-server3 clover-server4 clover-	clover-ns-nginx-server	HTTP: 9180 GRPC: 50054	ৰু জ্যান PutceRenostrok។ opnfv/clover-ns-nginx-server গ্ৰ
	server5			OPNEV Docker Hub

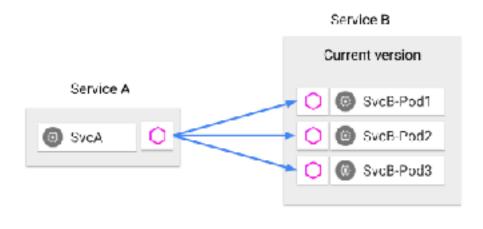
- Clover developing set of sample L7 network services for use in k8s and meshes
- New in Clover Gambia release: modsecurity

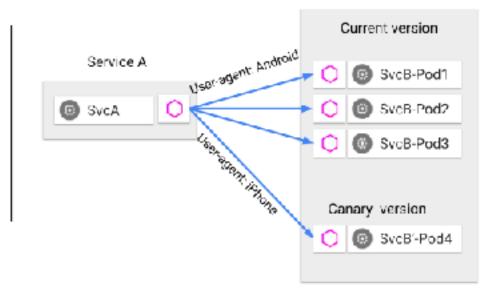
(Web Application Firewall + Apache web server)


LB at the edge of mesh receiving incoming/outgoing connections

name: http

hosts:


_ *******


protocol: HIIP

Istio Request Routing (1-2)

· Content-based steering to determine destination of request

Service B

Istio Request Routing (2-2)

- Flexible request routing with Virtual Service
 - Match traffic and route to back end service
 - Match based on URI, HTTP headers (identity, user-agent)
 - · Control with 'weight' field
- Ideal to validate REST based APIs and services
 - Support CI/CD deployment workflows
 - Canary validation/deployment

URLs to domain www.sdc.com

Match URI prefix '/ test' to clover-server2

Match HTTP header user-agent 'chrome' to clover-server3

Everything else to clover-server1

piVersion: networking.istic.ic/v/alpha3 kind: VirtualService ietadata: name: directserver nec: hosts: "www.sdc.com" http: - match: uri: prelix: /test route destination: port: number: 9180 host: clover-server2 match headers: user-agent: exact: chrome route: destination: port: number: 9180 host: clover-server3 route: destination; port: number: 9180 clover server1

Istio Mirroring

- Mirroring or Shadowing
 - Sends a copy of live traffic to a mirrored service
 - Add an entry to Virtual Service resource under any route rule

clo	over jineter master, clover serve	r1.default.svc.cluster.local.91	180/*		
3	Soans	dover (meter master (1) 🛛 🗧 dove	r serveri (1) 📄 smert ids (1)		
Sarvic	e & Operation	Oma	C-úne	C.10/	
- I cie	wer-jmeter-masker cover-ververt-default-avc.cluster.co	aliti0*			
~	clover-server1 store server detailars shelet local 9	110*			
	S100-05 riserament debut no distribution	*			
		clover server1	default.svo.eluster.local.9180	14	
		Thgs			
		component	"provy"		
		noor_ia	Teldecary(R. M. J. Wysnort-Site-Milled9	Will-repr.default-default.svc.claster.lacal*	
		guid x-request-lid	"08384469-1976-9652-8980-be400046647	27	
		hilpoort	"http://www.soc.com-shadow/"		
		htpunethod	-261-		
		downstroam_dusion			
		user_sgent	Texter!"		Any traffic to clover-
		http protocal	Terms/1.11		server1 mirrored to
		request_size	-9.		server i mirrorea lo
		upstream_cirister	"Exbound(#8) (short-bits.defae.3t.svc.c.	Lutter Llocal."	snort-ids
		hile states ande	" and "		

apiVersion: networking.istio.io/vlalpha3 kind: VirtualService metadata: name: directserver spect hosts: "www.sdc.com" http: match: - uri: profix: /test route: destination: port: number: 9180 host: clover-server2 - match: headers: user-agent: exact: chrome route: destination: port: number: 9180 host: clover server3 route: destination: port: number: 9189 host: clover-server1 mirror: host: snort-ids

Istio Destination Weight

- Use weight field under destination in Virtual Service to divide ingress traffic specified as percentage
- Two entirely different services
 - clover-server1
 - clover-server2

URLs to domain www.sdc.com

Match HTTP header user-agent 'chrome' to

20% to clover-server1

80% to clover-server2

ersion: networking.istic.ic/vlalpha3 kind: VirtualService etadata: name: directserverweight 000 hosts: "www.sdc.com" http: match: headers: user-agent: exact: chrome route: destination: port: number: 9189 host: clover-server1 weight: 20 destination: port: number: 9189 host: clover-server2

Istio Destination Weight for Service Versions

 Additionally use subset field to divide traffic among multiple versions of the same service

 DestinationRule resource defines subset labels (original http-lb deployment resource)

Useful for A/B testing

	apiVersion: networking.istio.io/vlalpha
	kind: VirtualService
	netadata:
	Usue: setAtceAetsTous
URLs to domain	spec:
www.sdc.com	hosts:
	"www.sdc.com" http:
	- match:
Match HTTP header	- headers:
	user agent:
user-agent 'chrome'	exact: chrome
to	route:
lo	- destination:
	port:
95% to http-lb (v1)	number: 9189
	host: http-lb subset: vi
	weight: 95
	- destination:
$E_0/4$ http://	port:
5% to http-lb (v2)	number: 9189
	host: http-lb
	subset: v2
	weight: 5
	apiVersion: networking.istic.ic/vlatpha
DestinationRule	kind: DestinationRule metadata:
	name: http:lb.destination
	spec;
Defines subset v1/	host: http-lb
v2 labels	subsets:
VZ 100513	name: vl
	labels;
	version: vl
	- name: v2

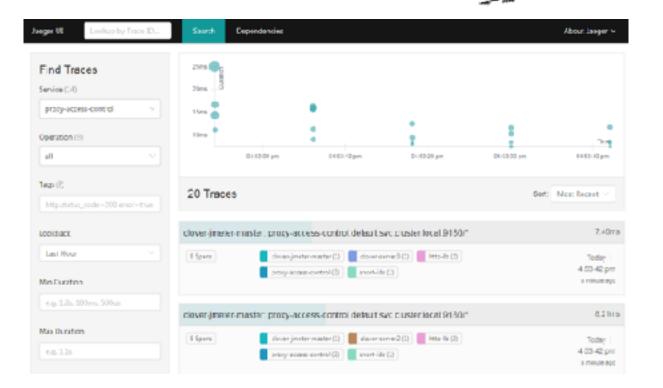
version: v2

Istio Fault Injection & Circuit Breaking

- Fault Injection
 - Inject faults to test the resiliency of your application
 - End-to-end failure recovery capability of the application as a whole
 - Delay: timing failures
 - Mimic network latency, or an overloaded upstream service

- Abort: crash failures
 - mimic failures in upstream services (HTTP error codes)

- Circuit Breaking
 - · Ejected from the load balancing pool when thresholds are exceeded
 - number of health check failures or number of conditions such as connection and request limits
- Useful for LFN projects that are planning or using cascading REST services



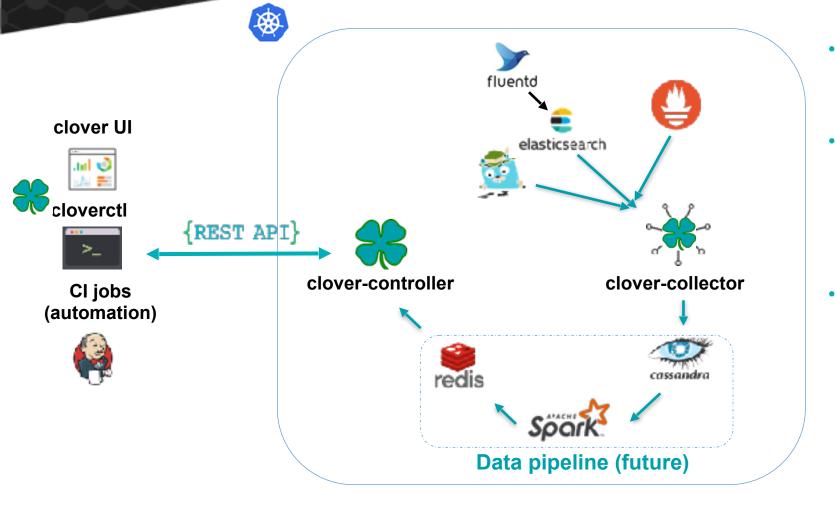
Istio Mesh - Visibility Tools

OPEN NETWORKING // Integrate, Automate, Accelerate

Jaeger: Tracing

Prometheus: Monitoring

- Good raw data
 - Individual traces in Jaeger •
 - Metrics list in Prometheus •
 - Dashboards in Istio / Grafana •
- But difficult to get insight of entire system (aggregate, top-level) and use analytics from data-sets


September 25 - 27, 2018 Amsterdam, The Netherlands

OPEN NETWORKING // Integrate, Automate, Accelerate

Visibility/Observability Infrastructure Mesh/ Non-Mesh

Clover Visibility

OPEN NETWORKING // Integrate, Automate, Accelerate

- Analyzes data from CNCF observability tools to provide abstraction
 - Gathers data and analyzes using Spark
- 4 core components (clover-system)
 - clover-collector (within k8s)
 - clover-controller (within k8s)
 - cloverctl (external)
 - clover UI (external)
- User interacts with cloverctl or UI
 - CLI/UI use same REST API from clovercontroller service
 - Chooses services to track
 - Outputs analyzed data to Redis

Clover Visibility Initialization (1-2)

- Install Istio
- Install clover-system components within k8s
- Expose clover-controller using LB or NodePort k8s service resource
- Gambia release will have CLI / script installation

\$ cloverctl init visibility
\$ cloverctl start visibility –f visibility.yaml
\$ cloverctl clear visibility

- Use CLI to initialize visibility
 - Create traces, spans, metrics Cassandra schemas
- Start visibility
 - Collector begins gathering data from Jaeger, Prometheus
- Clear visibility
 - Truncates tables

Clover Visibility Initialization (2-2)

- Set sampling interval for collector
- Tracing/monitoring k8s DNS names
- Tracing/monitoring listening ports (Jaeger/Prometheus)

\$ cloverctl start visibility –f visibility.yaml

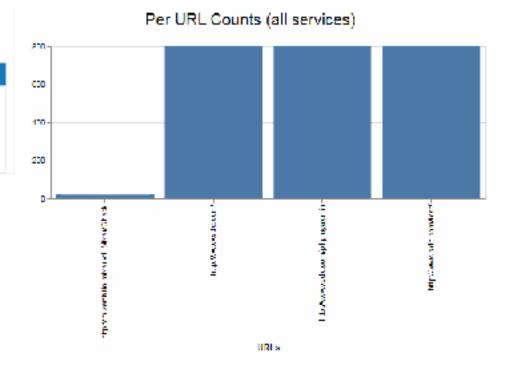
visibility.yaml

sample_interval: "10" t_host: tracing.istio-system t_port: "80" m_port: "9090" m_host: prometheus.istio-system

- Configure tracing services that visibility will analyze
- Configure metric prefixes/suffixes to analyze

\$ cloverctl set visibility -f metrics.yaml

metrics.yaml

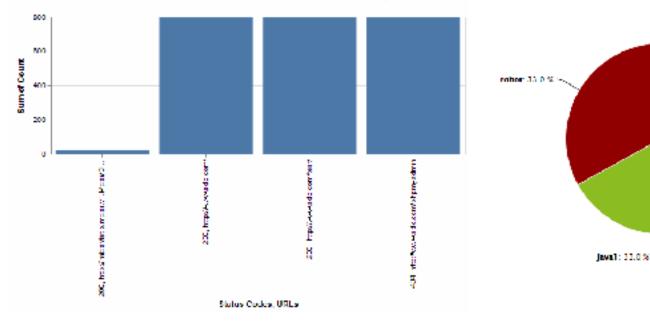


Clover Visibility Stats (1-3)

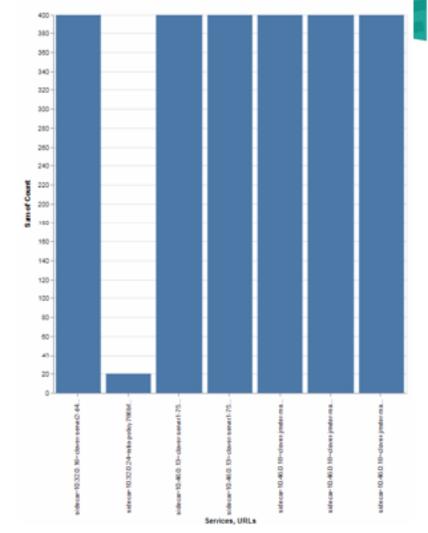
y-access-c	crivrol clover-server1 clover-server2		
	Visibility Services		
1.	dover_serva/3		
2	2. dover_serva/2		
3 clover_servert			
4.	proxy_access_control		

Tracing Metrics		
Average Response Times	System Counts	
SDC Proxy: 6ms	Traces: 16	
	Spans: 146	

- Analyze trace data at aggregate level
 - Calculate average response time for various services
- Break down data in various ways
 - Per URL, Per Service/URL, more TBA in Gambia release


Clover Visibility Stats (2-3)

chrome: 30.0 %


User-Agent Percentage

-110%

Per URL / HTTP Status Codes (all services)

- Find issues with REST services such as service HTTP status codes being returned
- Validate service mesh traffic management policies such as request routing by user-agent (ex. mobile vs desktop)

Per Service/URL Counts

Clover Visibility Stats (3-3)

• Characterize the composition of the traffic

User-Agents	Request URLs	Status Codes	
		http://snort-ids/	
http://clover.server1:9160/			
http://clover-server3:9180/			
http://clover-server2:9180/			
http://http-lb:9180/			
http://mixer/istio.mixer.v1.Mixer/Check			
http://proxy-access-control.default:9180/			

HTTP Details

Monitoring Metrics	
envey cluster incound 9100 clover server3 default sw. cluster local upstreaming 2xx	4553
envoy_cluster_intound_9180proxy_access_control_detaut_svc_cluster_local_upstream_rd_2zx	12109
envoy_cluster_outbound_9180clover_server1_default_svc_cluster_local_upstream_rq_2xx	5987
envoy_cluster_outbound_9100clover_server1_de/aut_svc_cluster_local_upstream_cx_active	0
envoy_cluster_outt.ound_9180clover_server2_detaul_svc_cluster_local_upstream_rg_2zx	5751
en/vy_cluster_incound_9180clover_server1_defaulf_evc_cluster_local_upstream_rq_2xx	6152
envoy_cluster_outbound_0180proxy_access_centrel_default_sve_cluster_local_upstream_rq_2xx	451
envoy cluster incound 9180 clover server2 default sw. cluster local upstream rg 2xx	6121
envoy_cluster_outbound_9180clover_servecl_detaut_svc_cluster_local_upstream_uq_2xx	41//
envoy_cluster_inbound_6130clover_server1_default_svs_cluster_local_upstream_cx_active	0
errory cluster outbound 9160 clover server2 default svc cluster local upstream cx active	10
envoy_cluster_inbound_9180proxy_access_control_detauit_svc_cluster_local_upstream_cx_active	0
envoy_duster_outbound_9180proxy_access_control_cefault_evs_cluster_local_upstream_cx_active	7
anvay_clustor_outbound_0160stover_servor3_do/auit_svc_clustor_lecal_upstream_cx_active	11
envoy_cluster_inbound_8150clover_server3_defaul_svc_cluster_local_upsteam_cx_active	0
envoy_cluster_inbound_\$130clover_server?_default_svr_cluster_local_upstream_rx_active	0

• Output service request/response rates over time, lost requests, etc.

Clover Clovisor

Istio

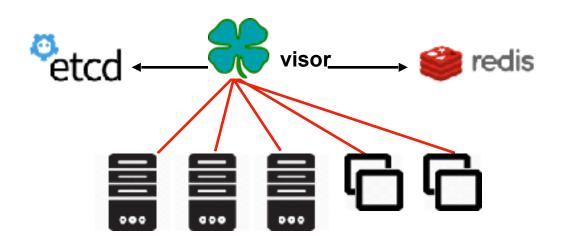
- Large compute footprint
 - Istio 13 Containers
 - Sidecar container per service
 - Latency overhead with long service chains
- Lacks visibility for:
 - L3 network
 - Other L4-7 content
- Lacks networking breadth for traffic management
 - Doesn't support wide set of protocols, tunneling, encapsulation

Hooks to OpenTracing, Jaeger

- Leverages eBPF
- Installed on k8s cluster nodes

Clovisor: Network Tracing... the Cloud Native Way

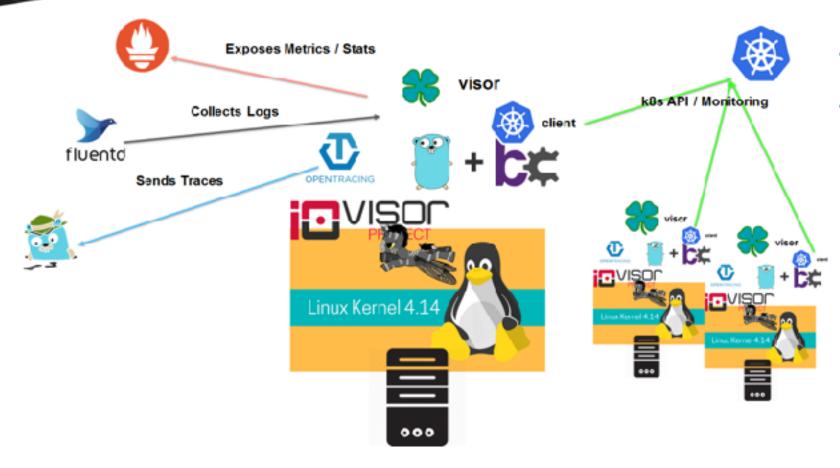
1. Cloud Native:



f flannel

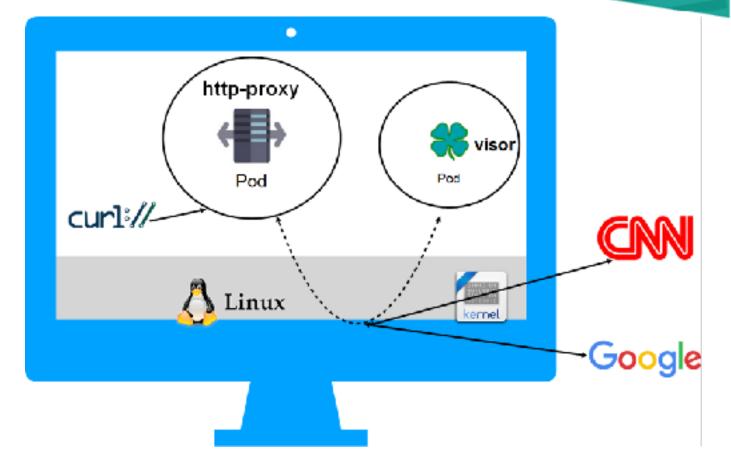
- a) Cloud Provider Independent
 - Bare-metal servers, GKE, EKS...etc
- b) CNI Plugin Agnostic
 - All CNI plugins should work unless such plugin does bypass
- c) CPU Architecture Independent
 - Any architecture supported by Linux (x86, ARM...etc), code (kernel versions 4.14 and 4.15 currently)
- 2. Implemented with Cloud Native Design Methodologies:
 - a) Config Decoupled from Compute
 - Config store in backing store or through environment variables
 - b) Relatively Stateless
 - TCP connection/session tracking only dynamic states
 - c) Scale-out Architecture
 - Pod monitoring partitioning via election from datastore
 - DaemonSet —- linearly scale on each node in cluster

- 3. <u>In-depth Integration with Cloud</u> <u>Native Ecosystem Projects:</u>
 - a) Built-in Kubernetes Client
 - Monitoring k8s pod states
 - b) Integrate with CNCF Collector Projects
 - OpenTracing to Jaeger, metrics to Prometheus



×86

Clovisor Architecture


- Lightweight, low latency network tracing module
- Utilizes IOVisor (bcc, gobpf) with eBPF to insert bytecode in Linux kernel to examine packets from both ingress / egress direction of a k8s pod

- In cluster client to automate process of monitoring and service port / protocol info
- Stream trace / stats / metrics / logs to respective tracer / collector modules

Clovisor Demo

- Configure monitoring labels (namespace:label-key:label-value)
- In this case: "default" namespace, key: "app", value: "proxy"
- Start Clovisor (on node, verify if the tc filter is created for device)
- curl <u>www.cnn.com</u> with http-proxy service port (3456)
- curl <u>www.google.com</u> with http-proxy service port (3456)
- Check Jaeger UI to verify traces written/sent

Visibility Use-Cases

- Easily pinpoint issues with individual services
- Integrate into CI to determine success/failure of jobs
 - CI used to determine CD deployment pipeline
- Monitor infrastructure in operations to determine system health
- Characterize the composition of traffic for content delivery or security
- Leverage to automate orchestration or zero-tech provisioning

September 25 - 27, 2018 Amsterdam, The Netherlands

OPEN NETWORKING // Integrate, Automate, Accelerate

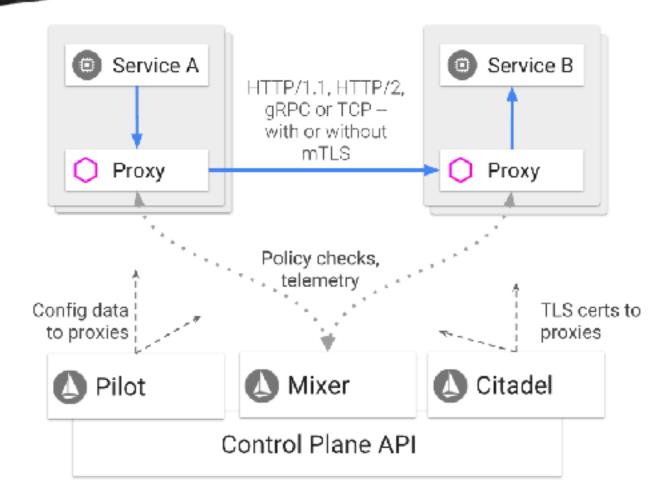
Summary

Key Take-Aways

- Service meshes allow microservices to be delivered more rapidly with integrated traffic management and visibility hooks
 - Visibility helps developers pinpoint issues and operators manage infrastructure
 - Built-in traffic management allows for microservice CI/validation and deployment strategies
 - Ideal for control-plane and REST services
- Service mesh distributed tracing/monitoring collects data efficiently but lacks an aggregate view of infrastructure/services
 - LFN projects such as Clover can provide high-level analytics for developers and operators
- Service mesh overhead/footprint and lack of networking breadth (both for visibility & routing/security)
 - Clovisor is a promising approach to fill gaps and add additional networking extensions

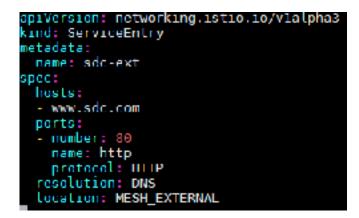
Clover Project Info

- Project Wiki
 - <u>https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home</u>
- Slack Channel
 - #clover-project
- Github Repo
 - <u>https://github.com/opnfv/clover</u>


September 25 - 27, 2018 Amsterdam, The Netherlands

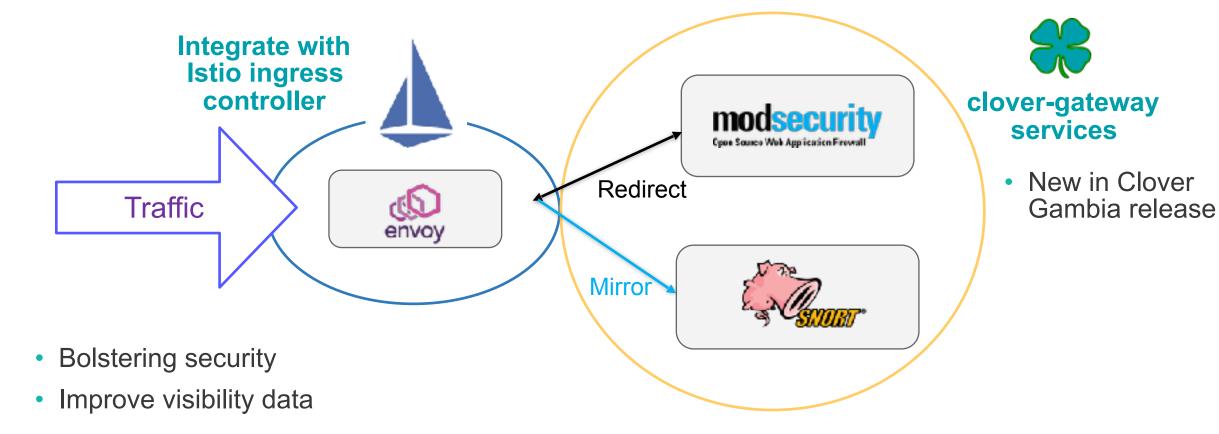
OPEN NETWORKING // Integrate, Automate, Accelerate

Appendix



Istio - Control Egress Traffic

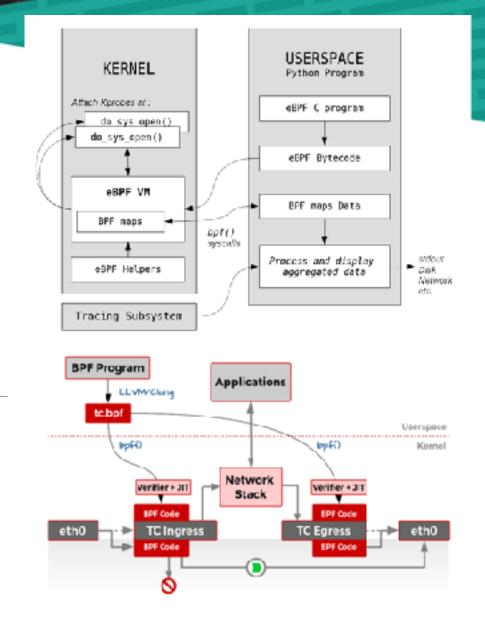
- Default Istio-enabled services are unable to access URLs outside of the cluster
 - Pods use iptables to transparently redirect all outbound traffic to the sidecar proxy, which only handles intra-cluster destination



Send traffic outside of mesh to 'www.sdc.com'

(assuming this is a valid domain in DNS)

Augmenting Mesh/Kubernetes Ingress


IOVisor & eBPF

Enhanced BPF

is in Linux

eBPF

- Inject bytecodes to kernel trace points / probes
 - Event driven model
- Networking: tc
 - Utilizes Linux tc (traffic control) to inject bytecode on ingress and egress direction of a network interface
- Verifier / JIT (just-in-time compiler)
 - Verifier ensures bytecode does NOT crash kernel
- IOVisor bcc:
 - Ease of eBPF Development
 - Helper functions, kernel API wrappers...etc
 - Dynamic Validation and Compilation
 - Userspace eBPF code written in 'C' is dynamically verified (static analysis) and compiled
 - gobpf
 - Golang interface for userspace code —- more performant than Python

