

Traffic Management and Visibility Infrastructure
for Rapid Microservice Delivery

Eddie Arrage
Futurewei Technologies Inc

Agenda
• Cloud Native Concepts (5 min)

• Microservices
• Service Deployment Strategies
• Challenges

• Traffic Management and Service Meshes (15 min)
• Service Meshes / Istio
• Mesh Traffic Management
• Mesh Visibility Tools

• Visibility/Observability Infrastructure Mesh/Non-Mesh (10 min)
• OPNFV Clover (+ Clovisor)

Cloud Native
• Benefits:

– Portable
– Scalable
– Ephemeral
– Accessible
– Flexible

– Dynamically managed
(Kubernetes)

– Containerized

– Microservice oriented

Microservices
– Monolithic App

– Break down into smaller
chunks

• Microservice architecture puts functionality into
separate services:
– Iterative development
– Division of labor
– Reduce single point of failure
– Language/deployment flexibility
– Build different apps using subsets of services
– Operations stakeholders are able to manage and

upgrade components more easily

Microservice Validation & Deployment Strategies

• Blue/Green
• Two identical environments of all microservices – Example:

• Green in production
• Release new version of service(s) in blue and validate
• Revert to green if issues exist or cut over to blue if not

• A/B Testing
• Support multiple versions of microservice simultaneously to compare variations/versions

• Canary
• Push new code to small group of users to evaluate incremental changes
• Early warning system for detecting problems

• Employ ingress network services for traffic management: load balancers, proxies and/or service
meshes to support

Cloud Native / Microservice Challenges

• Microservice sprawl
• Debug difficult without tools for visibility and traceability

of entire system

150+ containerized
services

• Microservice validation and deployment
strategies require integrated traffic management

• Current CI/CD pipelines in LFN projects have not adopted
consist framework/methodology for doing this

Cloud Native Traffic Management & Visibility

Mesh/Non-Mesh
Traffic Management

Visibility
Infrastructure

Continuous
Microservice

Validation and
Deployment

Low-level data
collection

? High-level insights/
analytics

Traffic Management and Service Meshes

Service Meshes
• Dedicated layer for managing

service communication
• Intra-service within cluster
• External traffic entering cluster

(ingress)
• Internal traffic leaving cluster

(egress)
• Fit best for control-plane services

Service A

Sidecar A Sidecar B

Service B

Pod A Pod B

– Allows for more
advanced routing than
native k8s networking

– ‘Sidecar’ injected as a
service proxy in each pod

– Examples: Istio, Conduit,
Apache ServiceComb

Micro-
service A

Micro-
service
B

Istio Service Mesh

• Traffic Management
• Load balancing
• Request routing
• Continuous deployment

• Canary
• A/B validation

• Fault injection
• Mirroring
• Secure communication

– Proxy oriented to HTTP/gRPC
– mTLS (optional)

– Manual or automatic
(namespace) sidecar
injection

– Toggle in/out of mesh
easily

•Visibility Built-in
– Monitoring, tracing, logging

Istio Install
• Current release at 1.0.2,
• Works best on k8s v1.9+ (with mutating webhook)

Install Setup

– automatic sidecar
(namespace) sidecar
injection

– Manual sidecar
injection

Install Istio and SDC
sample with Clover

$ docker pull opnfv/clover:latest
$ sudo docker run --rm \
 -v ~/.kube/config:/root/.kube/config \
 opnfv/clover \
 /bin/bash -c '/home/opnfv/repos/clover/samples/scenarios/deploy.sh'

Network Service Catalog

• Clover developing set of sample L7 network services for use in
k8s and meshes

• New in Clover Gambia release: modsecurity
(Web Application Firewall + Apache web server)

OPNFV Docker Hub
Images

Traffic within Mesh

k8s

Emulated Clients

clover-jmeter-master

– Inject jmeter into mesh
– Send traffic within cluster/mesh

– Service Delivery Controller
(SDC) Sample CNF

Istio Ingress

External Traffic into Mesh

Istio
Gateway

– Control how traffic is routed
within the mesh

– LB at the edge of mesh receiving
incoming/outgoing connections

Mesh Services

Virtual
Service

Istio Request Routing (1-2)

• Content-based steering to determine destination of request

Istio Request Routing (2-2)
• Flexible request routing with Virtual

Service
• Match traffic and route to back end

service
• Match based on URI, HTTP headers

(identity, user-agent)
• Control with ‘weight’ field

• Ideal to validate REST based APIs
and services

• Support CI/CD deployment workflows
• Canary validation/deployment

URLs to domain
www.sdc.com

Match URI prefix ‘/
test’ to

clover-server2

Match HTTP header
user-agent ‘chrome’

to
clover-server3

Everything else to
clover-server1

Istio Mirroring

• Mirroring or Shadowing
• Sends a copy of live traffic to a mirrored service
• Add an entry to Virtual Service resource under any route rule

Any traffic to clover-
server1 mirrored to

snort-ids

Istio Destination Weight

• Use weight field under destination in
Virtual Service to divide ingress traffic
specified as percentage

• Two entirely different services
• clover-server1
• clover-server2

URLs to domain
www.sdc.com

Match HTTP header
user-agent ‘chrome’ to

20% to clover-server1

80% to clover-server2

Istio Destination Weight for Service Versions

• Additionally use subset field to divide
traffic among multiple versions of the
same service

• DestinationRule resource defines subset
labels (original http-lb deployment
resource)

• Useful for A/B testing

URLs to domain
www.sdc.com

Match HTTP header
user-agent ‘chrome’

to

95% to http-lb (v1)

5% to http-lb (v2)

DestinationRule

Defines subset v1/
v2 labels

Istio Fault Injection & Circuit Breaking

• Fault Injection
• Inject faults to test the resiliency of your application
• End-to-end failure recovery capability of the application as a whole

– Delay: timing failures
• Mimic network latency, or an

overloaded upstream service

– Abort: crash failures
• mimic failures in upstream services

(HTTP error codes)

• Useful for LFN projects that are planning or using cascading REST services

• Circuit Breaking
• Ejected from the load balancing pool when thresholds are exceeded

• number of health check failures or number of conditions such as connection and request limits

Istio Mesh - Visibility Tools

• Jaeger: Tracing

• Good raw data
• Individual traces in Jaeger
• Metrics list in Prometheus
• Dashboards in Istio / Grafana

• But difficult to get insight of entire system
(aggregate, top-level) and use analytics
from data-sets

• Prometheus: Monitoring

Visibility/Observability Infrastructure Mesh/
Non-Mesh

Clover Visibility

cloverctl

clover-controller clover-collector

clover UI

• Analyzes data from CNCF observability
tools to provide abstraction
• Gathers data and analyzes using Spark

• 4 core components (clover-system)

– clover-collector (within k8s)
– clover-controller (within k8s)
– cloverctl (external)
– clover UI (external)

• User interacts with cloverctl or UI
– CLI/UI use same REST API from clover-

controller service
– Chooses services to track
– Outputs analyzed data to Redis

CI jobs
(automation)

Data pipeline (future)

Clover Visibility Initialization (1-2)

• Install Istio
• Install clover-system components within k8s
• Expose clover-controller using LB or NodePort k8s service resource
• Gambia release will have CLI / script installation

• Use CLI to initialize visibility
– Create traces, spans, metrics Cassandra schemas

• Start visibility
– Collector begins gathering data from Jaeger,

Prometheus
• Clear visibility

– Truncates tables

$ cloverctl init visibility
$ cloverctl start visibility –f visibility.yaml
$ cloverctl clear visibility

init

start

Clover Visibility Initialization (2-2)

• Set sampling interval for collector
• Tracing/monitoring k8s DNS names
• Tracing/monitoring listening ports (Jaeger/Prometheus)

$ cloverctl start visibility –f visibility.yaml

visibility.yaml

metrics.yaml

$ cloverctl set visibility –f metrics.yaml

• Configure tracing services that visibility will analyze
• Configure metric prefixes/suffixes to analyze

Clover Visibility Stats (1-3)

• Analyze trace data at aggregate level
• Calculate average response time for various services

• Break down data in various ways
• Per URL, Per Service/URL, more TBA in Gambia release

Clover Visibility Stats (2-3)

• Find issues with REST services such as service HTTP status codes being returned
• Validate service mesh traffic management policies such as request routing by user-agent

(ex. mobile vs desktop)

Clover Visibility Stats (3-3)

• Characterize the
composition of the traffic

• Output service request/response
rates over time, lost requests, etc.

– Lacks visibility for:
• L3 network
• Other L4-7 content

– Lacks networking breadth for traffic
management

• Doesn’t support wide set of protocols,
tunneling, encapsulation

Istio
– Large compute footprint

• Istio - 13 Containers
• Sidecar container per service

– Latency overhead with long service chains

Clover Clovisor

Clovisor
Hooks to

OpenTracing,
Jaeger

– Leverages eBPF
– Installed on k8s cluster nodes

Clovisor: Network Tracing… the
Cloud Native Way

1. Cloud Native:
a) Cloud Provider Independent

• Bare-metal servers, GKE, EKS…etc

b) CNI Plugin Agnostic
• All CNI plugins should work unless such plugin does kernel bypass

c) CPU Architecture Independent
• Any architecture supported by Linux (x86, ARM…etc), code (kernel

versions 4.14 and 4.15 currently)

2. Implemented with Cloud Native Design Methodologies:
a) Config Decoupled from Compute

• Config store in backing store or through environment variables
b) Relatively Stateless

• TCP connection/session tracking only dynamic states
c) Scale-out Architecture

• Pod monitoring partitioning via election from datastore
• DaemonSet —- linearly scale on each node in cluster

visor

3. In-depth Integration with Cloud
Native Ecosystem Projects:
a) Built-in Kubernetes Client

• Monitoring k8s pod states
b) Integrate with CNCF Collector

Projects
• OpenTracing to Jaeger, metrics to

Prometheus

Clovisor Architecture

• Lightweight, low latency network tracing
module

• Utilizes IOVisor (bcc, gobpf) with eBPF to
insert bytecode in Linux kernel to
examine packets from both ingress /
egress direction of a k8s pod

• In cluster client to automate process
of monitoring and service port /
protocol info

• Stream trace / stats / metrics / logs to
respective tracer / collector modules

Clovisor Demo

• Configure monitoring labels
(namespace:label-key:label-value)

• In this case: “default” namespace, key: “app”,
value: “proxy”

• Start Clovisor (on node, verify if the tc filter is
created for device)

• curl www.cnn.com with http-proxy service
port (3456)

• curl www.google.com with http-proxy service
port (3456)

• Check Jaeger UI to verify traces written/sent

Visibility Use-Cases

• Easily pinpoint issues with individual services
• Integrate into CI to determine success/failure of jobs

– CI used to determine CD deployment pipeline

• Monitor infrastructure in operations to determine system health
• Characterize the composition of traffic for content delivery or security

• Leverage to automate orchestration or zero-tech provisioning

Summary

Key Take-Aways

• Service meshes allow microservices to be delivered more rapidly with integrated
traffic management and visibility hooks

– Visibility helps developers pinpoint issues and operators manage infrastructure
– Built-in traffic management allows for microservice CI/validation and deployment strategies
– Ideal for control-plane and REST services

• Service mesh distributed tracing/monitoring collects data efficiently but lacks an
aggregate view of infrastructure/services

– LFN projects such as Clover can provide high-level analytics for developers and operators
• Service mesh overhead/footprint and lack of networking breadth (both for visibility &

routing/security)
– Clovisor is a promising approach to fill gaps and add additional networking extensions

Clover Project Info

• Project Wiki
– https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home

• Slack Channel
– #clover-project

• Github Repo
– https://github.com/opnfv/clover

https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home
https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home
https://wiki.opnfv.org/pages/viewpage.action?spaceKey=CLOV&title=Clover+Home
https://github.com/opnfv/clover
https://github.com/opnfv/clover

Appendix

Istio Control-Plane Components

Istio - Control Egress Traffic

• Default Istio-enabled services are unable to access URLs outside
of the cluster

• Pods use iptables to transparently redirect all outbound traffic to the
sidecar proxy, which only handles intra-cluster destination

Send traffic outside of mesh to ‘www.sdc.com’

(assuming this is a valid domain in DNS)

• Bolstering security
• Improve visibility data

Augmenting Mesh/Kubernetes Ingress

Traffic
Redirect

Mirror

Integrate with
Istio ingress

controller clover-gateway
services

• New in Clover
Gambia release

IOVisor & eBPF

• eBPF:
• Inject bytecodes to kernel trace points /

probes
• Event driven model

• Networking: tc
• Utilizes Linux tc (traffic control) to inject bytecode on

ingress and egress direction of a network interface
• Verifier / JIT (just-in-time compiler)

• Verifier ensures bytecode does NOT crash kernel

• IOVisor bcc:
• Ease of eBPF Development

• Helper functions, kernel API wrappers…etc

• Dynamic Validation and Compilation
• Userspace eBPF code written in ‘C’ is dynamically verified (static

analysis) and compiled
• gobpf

• Golang interface for userspace code —- more performant than Python

