

Toro, a Dedicated Kernel for Microservices
Matias E. Vara Larsen

Silicon-Gears
Cesar Bernardini

Barracuda Networks

Microservice #0

Logging

Microservice #1

Order

Microservice #2

Catalog

What is a microservice?

Logging

Order

Catalog

1. Monolithic

2. Microservices

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

Service Instance per Virtual
Machine (VM)

Microservice #1

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

General Purpose Guest OS

Microservice #1

Scheduler FileSystem

DriversNetworking

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

Each VM requires
its own OS

Microservice #0

 Bare-metal host

Hypervisor

General Purpose Guest OS

Microservice #1

Scheduler FileSystem

DriversNetworking

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

VM Context #0 VM Context #1

Microservice #0

The use of VMs to host
microservices allows

to isolate different services

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

General Purpose Guest OS

Microservice #1

Scheduler FileSystem

DriversNetworking

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

VMs take long time
to get up and run

The creation and
storage of VMs
are not simple

Too much complexity
for a single purpose

usage

Limited number
of VM instances

 Bare-metal host

Hypervisor

VM Context #0 VM Context #1

Microservice #0

General Purpose Guest OS

Microservice #1

Scheduler FileSystem

DriversNetworking

General Purpose Guest OS

Scheduler FileSystem

DriversNetworking

VMs take long time
to get up and run

The creation and
storage of VMs
are not simple

Too much complexity
for a single purpose

usage

Limited number
of VM instances

Toro is simple kernel that allows microservices to run efficiently
in VMs thus levering the strong isolation VMs provide.

Ingredients for ToroKernel
● User application within the kernel
● Cooperative Scheduler
● Dedicated Resources
● Single Thread Event Loop Networking

User application within the Kernel
● In general purpose OS, the user application executes as a process in the

less privileged mode, e.g., ring3 in x86.

● The communication from the user application to the kernel relies on
syscalls

● Context switch needs to switch from kernel mode to user mode, e.g.,
interruption and scheduling

User application within the Kernel
● In general purpose OS, the user application executes as a process in the

less privileged mode, e.g., ring3 in x86.

● The communication from the user application to the kernel relies on
syscalls

● Context switch needs to switch from kernel mode to user mode, e.g.,
interruption and scheduling

This is too expensive!
Can we do it better

for a single purpose kernel?

User application within the Kernel
Proposal

1. Run kernel and user application in the most privileged level.

2. Rely on the hypervisor to isolate the context of each VM

3. Use a flat memory model that is shared by the kernel and the user
application

4. Use only threads

5. Provide a simple kernel API dedicated to microservices

Toro Kernel

Devices

Microservice

Uses

Filesystem Memory

Networking

Toro.elf

Only the needed
components are

included

Toro Kernel

Devices

Microservice

Uses

Image

Filesystem Memory

Networking

Builder

The generated image is Immutable, i.e., the
generated image can be used across different
hypervisors without the need of recompile it.

Toro.elf

Toro Kernel

Devices

Microservice

Uses

Image

Filesystem Memory

Networking

Builder

CloudIt

Uses

Launches

VM

User appKernel Free mem

Single address
memory image

Toro.elf

Ingredients for ToroKernel
● User application within the kernel
● Cooperative Scheduler
● Dedicated Resources
● Single Thread Event Loop Networking

Cooperative Scheduler
● In a General Purpose OS, the scheduler is in charge to distribute the CPU

time for each process

● When a task has consumed its time, the scheduler switches to the next
ready task

● The scheduler relies on a timer

Cooperative Scheduler
● In a General Purpose OS, the scheduler is in charge to distribute the CPU

time for each process

● When a task has consumed its time, the scheduler switches to the next
ready task

● The scheduler relies on a timer

Can we do it better
for a single purpose kernel?

Cooperative Scheduler
Proposal

1. Cooperative scheduler, i.e., each thread decides when to yield the CPU

2. Simple scheduler, i.e., the scheduler chooses the first thread in ready
state

2. One scheduler per core

3. Remote creation of threads by relying on a lock-free algorithm

Order

DataBase Microservice

Threads

Order

DataBase

Core 1 Core 2

Thread 1 Thread 2

dedicates

Microservice

BeginThread(DataBase, Thread1, Core1)

BeginThread(Microservice, Thread2, Core2)

Threads

Order

DataBase

Core 1 Core 2

Thread 1 Thread 2

Microservice

One core
one task!

Better cache
performance!

Ingredients for ToroKernel
● User application within the kernel
● Cooperative Scheduler
● Dedicated Resources
● Single Thread Event Loop Networking

Dedicated Resources
● In a multicore system, the problematic resource

is the shared memory. The use of shared
memory causes:
– Overhead in the memory bus
– Overhead in the cache to keep it coherent
– Overhead to guaranty mutual exclusion, e.g., use of

spin-locks

Dedicated Resources
Proposal

● Toro improves memory access by keeping the
resources locals:
– The memory is dedicated per core
– The kernel data structures are dedicated per core
– The access to kernel data structures is lock free

Core 1 Core 2

Memory Region 1 Memory Region 2

TORO Memory allocator

Memory space in Toro

Dedicated Resources

ToroGetMem()ToroGetMem()

Thread 1 Thread 2

Access to this region
can be improved

by using
Hypertransport

Or Intel Quick Path

Core 1 Core 2

Dedicated Resources

Memory 1 Memory 2

Disk1 Network1

DedicateBlockDriver(Disk1, Core1)
DedicateNetworkDriver(Network1, Core2)

dedica
tes

Core 1 Core 2

Dedicated Resources

Memory 1 Memory 2

Disk1 Network1

DedicateBlockDriver(Disk1, Core1)
DedicateNetworkDriver(Network1, Core2)

dedica
tes

e.g.,
ATA Disks

e.g,.
E1000, VirtIO

Core 1 Core 2

Dedicated Resources

Memory 1 Memory 2

Disk 1 Network Card

Ext3 Network Stack

Dedicated Resources

Disk 1

Memory 1 Memory 2

Network Card

Core 1 Core 2

Ext3 Network Stack

Thread 1 Thread 2

Data Base Microservice

Messages, shared memory or any mechanism to
communicate between threads

Dedicated Resources

Disk 1

Memory 1 Memory 2

Core 1 Core 2

Ext3

Thread 1

Data Base

Messages, shared memory or any mechanism to
communicate between threads

Network Card

Network Stack

Thread 2

Microservice

In Toro, microservices are first-class objects

Ingredients for ToroKernel
● User application within the kernel
● Cooperative Scheduler
● Dedicated Resources
● Single Thread Event Loop Networking

Single Thread Event Loop
● Toro networking is based on the single thread event

loop model [1], i.e., one thread per microservice
● The kernel provides a dedicated API to create

microservices
● The kernel implements the microservice and

improves the CPU usage[2]

[1] Node JS Architecture – Single Threaded Event Loop
[2] Reducing CPU usage of a Toro Appliance, FOSDEM’18

Microservice

Accept() Receive() Close()

Single Thread Event Loop

The user defines
how to react

to events

Kernel

Microservice

Accept() Receive() Close() SysServiceCreate()

Single Thread Event Loop

The user
registers a

set of callbacks

Kernel

Service Thread “A”

Socket #0 Socket #1 Socket #N...
Socket Scheduler

Microservice

Accept() Receive() Close() SysServiceCreate()

The thread schedules
each socket

Single Thread Event Loop
Each microservice is

implemented
by using one thread.

Kernel

Service Thread “A”

Socket #0 Socket #1 Socket #N...
Socket Scheduler

Microservice

Accept() Receive() Close() SysServiceCreate()

Single Thread Event LoopThe Event Loop halts
the core if none connection

arrives

Kernel

Service Thread “A”

Socket #0 Socket #1 Socket #N...
Socket Scheduler

Microservice

Accept() Receive() Close() SysServiceCreate()

Single Thread Event Loop

“It’s all talk until the code runs.” - Ward Cunningham

HelloWorld Microservice Example
● We implement a simple microservice that responds “Hello World”
● We implement it by using three approaches: Docker, Ubuntu guest

(KVM) and Toro guest (KVM)
● We compare these approaches in term of:

– Deploying Time
– Bootstrap Time
– Image Size
– CPU usage
– Time per Request

Microservice footprint

HelloWorld Microservice Example
setup

Docker General OS/KVM Toro/KVM

● Cpu limit
● Memory limit

● NGINX
● UWSGI (4 processes)
● Flask

● Cpu limit
● Memory limit

● NGINX
● UWSGI (4 processes)
● Flask

● CPU limit
● Memory limit

● Toro WWW server

Deploying Time
● Time required to build an image within the

microservice

Bootstrap Time
● Time to boot and to answer the first request

Image Size
● Size of the image that contains the

microservice and its dependencies.

CPU Usage

End-User Delay
● Benchmarking with ab and measuring the Time

per Request (mean) [ms]

Number of Concurrent Request

Approach CPUs 200 500 1000

Docker 4 139.980 ms 333.937 ms 801.422

Ubuntu/KVM 4 94.507 ms 238.149 ms 560.513 ms

 TORO/KVM 1 120.065 ms 301.736 ms 596.792 ms

Take away lessons
● Minimal image size (< 4MB)

– NGINX docker image is 15-times the size of a Toro image

● Continuous Integration: 1 sec to re-deploy a microservice
– Deploy an OS w/similar configuration takes 300 sec, with docker ~50 sec

● Time per Requests
– Comparable level with cutting edge technology (NGINX)

● CPU Usage
– Comparable with Docker
– Toro is 100% isolated from the host OS, Docker is not.

Summary
● Toro is a kernel dedicated to run microservices
● Toro provides a dedicated API to specify microservices
● Toro design is improved in four main points:

– Booting time and building time
– communication to kernel
– memory access
– networking

Future Work
● Ease tooling to develop, test and debug microservices
● Investigate new use-cases
● Investigate the porting of applications
● Investigate new ideas to improve the network stack for

microservices, e.g., improve socket scheduling for
http, resource allocation algorithm

QA
● http://www.torokernel.io
● torokernel@gmail.com
● Twitter @torokernel
● Torokernel wiki at github

– My first Three examples with Toro

● Test Toro in 5 minutes (or less...)
– torokernel-docker-qemu-webservices at

Github

mailto:torokernel@gmail.com

Thanks!

