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Toro is simple kernel that allows microservices to run efficiently 
in VMs thus levering the strong isolation VMs provide. 



 

Ingredients for ToroKernel
● User application within the kernel
● Cooperative Scheduler
● Dedicated Resources
● Single Thread Event Loop Networking



 

User application within the Kernel
● In general purpose OS, the user application executes as a process in the 

less privileged mode, e.g., ring3 in x86. 

● The communication from the user application to the kernel relies on 
syscalls

● Context switch needs to switch from kernel mode to user mode, e.g., 
interruption and scheduling
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● In general purpose OS, the user application executes as a process in the 

less privileged mode, e.g., ring3 in x86. 

● The communication from the user application to the kernel relies on 
syscalls

● Context switch needs to switch from kernel mode to user mode, e.g., 
interruption and scheduling

This is too expensive!
Can we do it better

for a single purpose kernel?



 

User application within the Kernel
Proposal

1. Run kernel and user application in the most privileged level. 

2. Rely on the hypervisor to isolate the context of each VM 

3. Use a flat memory model that is shared by the kernel and the user 
application

4. Use only threads

5. Provide a simple kernel API dedicated to microservices 
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● In a General Purpose OS, the scheduler is in charge to distribute the CPU 

time for each process

● When a task has consumed its time, the scheduler switches to the next 
ready task

● The scheduler relies on a timer   
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● When a task has consumed its time, the scheduler switches to the next 
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Can we do it better
for a single purpose kernel?



 

Cooperative Scheduler
Proposal

1. Cooperative scheduler, i.e., each thread decides when to yield the CPU

2. Simple scheduler, i.e., the scheduler chooses the first thread in ready 
state  

2. One scheduler per core

3. Remote creation of threads by relying on a lock-free algorithm
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Dedicated Resources
● In a multicore system, the problematic resource 

is the shared memory. The use of shared 
memory causes:
– Overhead in the memory bus
– Overhead in the cache to keep it coherent
– Overhead to guaranty mutual exclusion, e.g., use of 

spin-locks



 

Dedicated Resources
Proposal

● Toro improves memory access by keeping the 
resources locals:
– The memory is dedicated per core
– The kernel data structures are dedicated per core
– The access to kernel data structures is lock free
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Access to this region
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In Toro, microservices are first-class objects
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Single Thread Event Loop
● Toro networking is based on the single thread event 

loop model [1], i.e., one thread per microservice
● The kernel provides a dedicated API to create 

microservices
● The kernel implements the microservice and 

improves the CPU usage[2]

[1] Node JS Architecture – Single Threaded Event Loop
[2] Reducing CPU usage of a Toro Appliance, FOSDEM’18
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“It’s all talk until the code runs.” - Ward Cunningham



 

HelloWorld Microservice Example
● We implement a simple microservice that responds “Hello World”
● We implement it by using three approaches: Docker, Ubuntu guest 

(KVM) and Toro guest (KVM)
● We compare these approaches in term of:  

– Deploying Time 
– Bootstrap Time 
– Image Size 
– CPU usage 
– Time per Request

Microservice footprint
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Deploying Time
● Time required to build an image within the 

microservice



 

Bootstrap Time
● Time to boot and to answer the first request



 

Image Size
● Size of the image that contains the 

microservice and its dependencies.



 

CPU Usage



 

End-User Delay
● Benchmarking with ab and measuring the Time 

per Request (mean) [ms] 

Number of Concurrent Request

Approach CPUs 200 500 1000

Docker 4  139.980 ms 333.937 ms 801.422

Ubuntu/KVM 4  94.507 ms 238.149 ms  560.513 ms

 TORO/KVM 1 120.065 ms 301.736 ms 596.792 ms



 

Take away lessons
● Minimal image size (< 4MB)

–  NGINX docker image is 15-times the size of a Toro image

● Continuous Integration: 1 sec to re-deploy a microservice
– Deploy an OS w/similar configuration takes 300 sec, with docker ~50 sec

● Time per Requests
– Comparable level with cutting edge technology (NGINX)

● CPU Usage
– Comparable with Docker
– Toro is 100% isolated from the host OS, Docker is not.



 

Summary
● Toro is a kernel dedicated to run microservices
● Toro provides a dedicated API to specify microservices 
● Toro design is improved in four main points:

– Booting time and building time
– communication to kernel
– memory access 
– networking



 

Future Work
● Ease tooling to develop, test and debug microservices
● Investigate new use-cases
● Investigate the porting of applications
● Investigate new ideas to improve the network stack for 

microservices, e.g., improve socket scheduling for 
http, resource allocation algorithm



 

QA
● http://www.torokernel.io
● torokernel@gmail.com
● Twitter @torokernel
● Torokernel wiki at github

– My first Three examples with Toro

● Test Toro in 5 minutes (or less...)
– torokernel-docker-qemu-webservices at 

Github

mailto:torokernel@gmail.com


 

Thanks!


