

The Seven Year Leap
Updating a product from Linux 2.6 to 4.15,
a real-world project case study

ELC-E October 2018, Edinburgh UK

Ed Langley, Kobilon
elangley@kobilon.com

The Seven Year Leap
Updating a product from Linux 2.6 to 4.15,
a real-world project case study

ELC-E October 2018, Edinburgh UK

Ed Langley, Kobilon
elangley@kobilon.com

Not the first talk related to working with older kernelsNot the first talk related to working with older kernels

● Stuck in 2009 — How I Survived

Will Sheppard, Embedded Bits Limited

ELCE 2016

https://elinux.org/ELC_Europe_2016_Presentations

● How I survived to a SoC with a terrible Linux BSP

Luca Ceresoli, AIM Sportline

FOSDEM 2016, ELCE 2017

https://elinux.org/ELC_Europe_2017_Presentations

● Long-Term Maintenance, or How to (Mis-)Manage Embedded Systems for 10+ Years

Jan Lübbe, Pengutronix e.K.

ELCE 2016

https://elinux.org/ELC_Europe_2016_Presentations

Where are you on the kernel development spectrum?Where are you on the kernel development spectrum?

(Or, where is your project on it?)

Newest kernel version Oldest kernel version

1 2 3

1: kernel maintainer
2: semiconductor/IP vendor (Initial support may go into their own repository first)
3: Recently started product/device development
4: bigger Linux distributions, (Extending to right for LTS maintenance)
5: BSP or dev kit vendor for class of devices (E.G. set top boxes)
6: Ongoing product development/maintenance (Or new one with bad BSP)
7: Legacy / heavily regulated / safety critical device maintenance

5 64 7

What was the device in this project?What was the device in this project?

● Single purpose handset running Android 4.4
● Boots and loads a dedicated app written by customer app

team
● HW design quite old - based on TI DM3730 (OMAP3)

– Similar design to the BeagleBoard xM

– Display through OMAP DSS RFBI (MIPI-DBI) -> HX8369 -> ILI9806
TFT panel

– Other off-chip peripherals: GSM modem, Bluetooth interface

Older kernel problems resolvedOlder kernel problems resolved

● Initial Android support using a 2.6 TI kernel
– That kernel pre-dates addition of certain required driver features

● Backported I2C touchscreen driver
● Then had to backport OMAP3 RTC alarm wake up from

suspend
– 12 cherry picks, plus fixup to allow backported init code to run

through correctly

– Not just a case of taking a self contained .c file from a later kernel

Older kernel problems NOT resolvedOlder kernel problems NOT resolved

● Battery life too short
– Current draw in suspend too high: 0.09mA, needed to be

0.03mA

– Need the SYS_OFF_MODE support for TWL4030 PMIC,
added after 2.6
» Suspend/resume scripts loaded to PMIC, initialisation, OMAP

HWMOD framework
» Would have needed to take functionality and rewrite to fit older kernel

...and becoming blockers

Older kernel problems NOT resolvedOlder kernel problems NOT resolved

● SD card eject and re-insertion detection
– SD card only detected and read correctly if inserted at

boot

– Expected to be trivial, was not

– More integration with OMAP HWMOD framework

– Again, would need significant rewrite for the very
different OMAP hwmod framework in older kernel

Older kernel problems NOT resolvedOlder kernel problems NOT resolved

● The big one: Suspend lock up
– When system goes into suspend, intermittently does not resume, not

responsive to power button

– Debugging the issue:
» Extra kernel printks, function tracing
» Observing current draw measurement on power supply helped characterise the issue

– Which established:
» System will recover when serial port activity (Required opening handset case and

soldering in wires to debug UART)
» More likely to occur if no touchscreen input generated after reset
» Very likely I2C related

– Could have continued investigating (Had more ideas to try since)
» But with the other issues to deal with in the old kernel, is it worth it?

Making the case for the upgradeMaking the case for the upgrade
● I proposed a new kernel may solve all 3 problems at once
● Q

– "Will it fix everything?"

– "How long will it take? / Cost?"

● A
– Can't promise lower power consumption, or problems fixed

– But could try it and see...
» I.e. Propose least amount of effort needed to establish requirements

are met / problems are fixed by a newer kernel version

Initial plan / estimatesInitial plan / estimates
● To check if new kernel will resolve problems, only

need to estimate work needed to check that
– Get Linux booting to a shell prompt, kernel only needs:

» UART driver
» Existing SoC support for on-chip peripherals - to test problem

areas

– Use a plain rootfs (Not Android)

● In other projects, depending on what the problems
are, getting to this point might not be so easy

Finding the starting pointFinding the starting point
● This is probably the main area where YMMV

● For rootfs, just used buildroot
– No BeagleBoard Yocto BSP

– Eventual goal is Android anyway

● Newer toolchain
– Ended up keeping older toolchain for AOSP userspace stuff

● TI DM37xx support all in mainline kernel by now
– Should have started with that ….

Getting to a bash promptGetting to a bash prompt

● First difference – where has default kernel config gone?
» In 2.6, for a BeagleBoard-xM built kernel with omap3_beagle_defconfig – long since removed

● Had several false starts trying methods to build kernel/rootfs images for a BB-xM
– Buildroot version with extra patches for BeagleBoard
– Kernel on BeagleBoard github
– These had custom kernel configs or menu defaults (bb.org_defconfig, omap2plus_defconfig)

» Distracted from the correctly booting options available in mainline

● Eventual optimum setup which worked correctly:
– Mainline kernel tree, latest stable release
– Build with multi_v7_defconfig, then load omap3-beagle-xm.dtb

U­Boot# bootz ${loadaddr} ­ ${fdtaddr}
Kernel image @ 0x80200000 [0x000000 ­ 0x50abb8]
Flattened Device Tree blob at 80f80000
 Booting using the fdt blob at 0x80f80000
 Using Device Tree in place at 80f80000, end 80f9810c

Starting kernel ...

<nothing happens>

Newer kernel, newer boot loaderNewer kernel, newer boot loader
● U-Boot support for loading a DTB
● Could have managed with older U-Boot, but path of least resistance was

to upgrade U-Boot+kernel as a pair
● MLO in NAND will load U-Boot from SD if found

– Needed to be able to load old U-Boot from newer MLO, for re-flashing old OS
without opening case to press boot select button:

– After consideration, this only matters when MLO in NAND loads U-Boot from SD

● Solution was to ensure
– U-Boot file on SD always named u-boot.bin (Same as old version)

– New U-Boot linked to run from 0x80008000 (Again, same as old version)

Default: NAND → USB → UART3 → MMC1
Boot select held: USB → UART3 → MMC1 → NAND

New kernel runningNew kernel running
● Stuff that just worked out of the box:

– Serial port

– Power button

– Suspend/resume
» Current draw in suspend now at 0.03mA

– RTC alarm waking up from suspend
– SD card insertion/removal detection and ability to mount

Check the new kernel has fixed the blocking issuesCheck the new kernel has fixed the blocking issues

● First step - ensure the point of upgrading
has been achieved

● Only then move on to adding support for
platform customisations/bespoke
peripherals

Check the new kernel has fixed the blocking issuesCheck the new kernel has fixed the blocking issues

#!/bin/sh

LOOP_COUNT=0

echo "Suspend wake cycle test script"
echo ""

while [true]; do
 echo "suspending for 10 seconds"
 echo +10 > /sys/class/rtc/rtc0/wakealarm
 echo mem > /sys/power/state

 echo "woken by RTC, waiting 10 seconds"
 sleep 10

 echo ""
 echo "Iterations so far: $LOOP_COUNT"
 echo ""
 LOOP_COUNT=`expr $LOOP_COUNT + 1`
done

Re-adding support for peripherals to new kernelRe-adding support for peripherals to new kernel

● First thing to remember when jumping to a
present day kernel:
– Look closely at what drivers/subsystems are about in

the kernel source

– Not everything is where you would expect it
» Check the drivers/staging/ directory

– Check DTSs of similar platforms for examples

Example of almost doing it wrong: BacklightExample of almost doing it wrong: Backlight

● In the old kernel, the platform used a copy of
backported driver:

drivers/video/backlight/pandora_bl.c
– With PWM channel changed

● That driver still there in 4.x
– Started adding an altered version again, then

realised that driver is leftover legacy

Example of almost doing it wrong: BacklightExample of almost doing it wrong: Backlight

backlight {
compatible = "pwm­backlight";
pwms = <&twl_pwm 1 12000000 0>;
pwm­names = "backlight";
Brightness­levels = <0 5 10 15 20 25 30 35 40 45 50
 55 60 65 70 75 80 85 90 95 100>;
default­brightness­level = <19>; /* => 90 */
pinctrl­names = "default";

};

● drivers/video/backlight/pwm_bl.c

● drivers/pwm/pwm­twl.c

Working with your DTSWorking with your DTS

● Just take a few moments to stop and.... learn
device tree
– As in learn how to mine through the bindings doc

and identify the obscure attributes available in
any given node used on your platform and so on

● https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf

TouchscreenTouchscreen
● Old kernel: atmel_mxt_ts.c backported

● New kernel: Atmel Maxtouch driver now in mainline
● Still needed to forward port a few alterations, E.g. for co-

ordinate axis reversal
– Initially tried adding touchscreen­inverted­x/y property to the

DTS node to do this, but use of those properties are down to the
driver

– DTS bindings doc is your friend, but so is reading the source still

Display: A bigger challengeDisplay: A bigger challenge

● Uh oh!
● First step: unflag as broken - got compile errors

– Time to roll up sleeves do some proper dev work

From drivers/video/fbdev/omap2/omapfb/dss/Kconfig:

config FB_OMAP2_DSS_RFBI
 bool "RFBI support"
 depends on BROKEN
 default n
 help
 MIPI DBI support (RFBI, Remote Framebuffer Interface, in Texas
 Instrument's terminology).

Re-enabled a driver... in the wrong subsystem?Re-enabled a driver... in the wrong subsystem?

● Correct long term approach would probably be to put RFBI
support into:
– drivers/gpu/drm/omapdrm/dss/

● For this port it was quicker to re-enable RFBI in existing
location:
– drivers/video/fbdev/omap2/omapfb/dss/

● Nagging awareness during this work that I was making
updates in the wrong place

Re-enabled a driver... in the wrong subsystem?Re-enabled a driver... in the wrong subsystem?

● Forward ported panel driver using HX8369+ILI9806 into:
– drivers/video/fbdev/omap2/omapfb/displays (For now)

● HX83xx + ILI9xxx sounds like panel drivers which have
gone into drivers/staging/fbtft/
– Similar result – some of the chips variants share same

interfaces (MIPI-DBI serial for example),

– But driver plumbing in SW for TI MIPI-DBI implementation is
very different to hanging a display off SPI

RFBI being stubbornRFBI being stubborn
● Driver running happily, but nothing on the screen. Checked:

– Clocks (RFBI, DISPC, DSS)

– Test frame output in driver, FB manual update test app

– DISPC register values set correctly (After probe, after frame output)

– IRQs (FRAMEDONE not triggering….)

– Clocks again

– Pinmuxing

– Reset GPIO (Manually toggled, checked regs directly, check GPIO pinmux….)

– Clocks again (Oh wait, PLL2 isn’t enabled!….Still doesn’t work though)

– Reset GPIO again (Switched to using reset-gpios dts property, seemed to get that working)

– Clocks again (Yes, really)

– And then...

RegulatorsRegulators
● Example of an item largely ignored by me in the

previous kernel port

static struct regulator_consumer_supply beagle_vaux1_supply = {
 .supply = "cam_3v0",
};

static struct regulator_init_data beagle_vaux1 = {
 .constraints = {
….
 },
 .num_consumer_supplies = 1,
 .consumer_supplies = &beagle_vaux1_supply,
};

static struct twl4030_platform_data beagle_twldata = {
….
 .vaux1 = &beagle_vaux1,
….
};

TFT_WR_1V8

PMIC

TFT_CS_1V8

TFT_RESET_1V8

TFT_DATA[0..15]_1V8

TFT_WR_3V3

TFT_CS_3V3

TFT_RESET_3V3

TFT_DATA[0..15]_3V3

I2C

VAUX3_1V8 VAUX1_3V3

SoC

Level
shifter

RegulatorsRegulators
● Which must now be enabled in a very different way

DTS:
lcd0: display {
 compatible = "ilitek,ili9806";
 label = "lcd";
 vcc1­supply = <&vaux1>;
 vcc2­supply = <&vaux3>;

Driver:
struct panel_drv_data {
...
 struct regulator *vcc1;
};

In probe():
 ddata­>vcc1 =

devm_regulator_get(&pdev­>dev, "vcc1");

In panel_enable():
 r = regulator_enable(ddata­>vcc1);

Putting Android back on againPutting Android back on again
● “Simply just replace the buildroot test rootfs with the

Android filesystem images from before, right?”
● Oh yes and switch to SW rendering (Easier to ignore the

GPU for now)

BoardConfig.mk:

USE_OPENGL_RENDERER := false

(Depending on Android version)

Staying with Kitkat on 4.x kernelStaying with Kitkat on 4.x kernel

● Problems:
– ashmem driver removed

– Android logger driver removed

– ADB not working

ADB supportADB support
● Android composite USB driver had been taken out
● Soon found that last available version of Android composite USB

gagdet driver is now very incompatible with latest kernel
● Hang on though, how does newer Android do it, after the driver was

removed?
● With UBS gadget ConfigFS

– adbd had support for that added in Android version... Kitkat (Phew)

● Re-affirmation of the lesson: Don't blindly forward port stuff,
understand and leverage what is new

First usable releaseFirst usable release

Yay

Initial feedback from test teamInitial feedback from test team
● "Performance is slow"
● First suspicion was the software rendering I had enabled

– Experience of this with the platform after working on the RFBI
in 2.6

Re-adding PowerVR SGX rendering supportRe-adding PowerVR SGX rendering support

● Latest version of TI Graphics SDK (5.01) only supports kernel up to 3.8
– Forward ported pvrsrvkm module to 4.14: Missing symbols on module load

– Applied patches found online: Reset and clocking issues

– Made further changes to enable clocks according to clock tree configuration on this
platform

● That got 5.01 PVR modules + 5.01 regular SDK + 4.14 kernel working
– Android version of TI Graphics SDK, with different EGL lib, only up to version 4.06

» 5.01 PVR modules + 4.06 Android SDK: PVR userspace daemon version mismatch error (against
kernel driver) at init

● Eventually found a working approach by forward porting the older TI Android
graphics SDK 4.06 kernel modules
– And applying my patches

A whole bunch of other bitsA whole bunch of other bits
● Battery charging status / level reporting PMIC driver – update to be usable again

– Add support for DTS properties

● Secondary battery enable and voltage reading PMIC driver
● Android OTA updater application mods for different UBI layout in NAND
● Arbitrary GPIO numbering due to enumerating each bank in random order at boot

– Patched gpio-omap.c driver to set ordering in DTS

● ADB support take two - not working on Windows workstations (But was on Linux PC)
– Serial number argument to gadget driver needed

– First attempt used functionFS, Windows ADB only registers composite USB devices, made
switch to configFS

– Had to wade through Windows adb.exe source to figure those out

● GPU driver take two - VSYNC interrupt not firing

How long did it take, in retrospect?How long did it take, in retrospect?

How long did it take, in retrospect?How long did it take, in retrospect?

Activity Hours Days if 8
hours

Booting 4.x kernel, bootloader, rootfs on SD 47.5 5.9375

NAND support, unlock, UBI rootfs 62 7.75

Backlight 5 0.625

Touchscreen 12 1.5

RFBI+TFT panel driver 128 16

Android boot 45.5 5.6875

Touchscreen continued 29 3.625

Android ADB driver setup 18 2.25

Battery charging interface 15.5 1.9375

How long did it take, in retrospect?How long did it take, in retrospect?

Activity Hours Days if 8 hours

AOSP build changes (kernel config,
repo branches, toolchain, makefiles)

8 1

GSM modem power control driver 14.5 1.8125

Clean up and config adjustments 16 2

Audio 9 1.125

Bootloader backwards compatibility 17 2.125

AOSP changes (Init script changes etc) 8 1

GPIO numbering 23 2.875

Backup battery PMIC driver 6 0.75

Off-chip peripheral power up pinmuxing 23 2.875

How long did it take, in retrospect?How long did it take, in retrospect?

Activity Hours Days if 8 hours

NAND Android boot, unlock 26.5 3.3125

Android update application UBI layout 26 3.25

Wakelock issue 24 3

GPU 58 7.25

ADB take two 8 1

PPPD config, RIL issues 37 4.625

GPU continued 58 7.25

GPU VSYNC interrupt issue 35 4.375

Totals 759.5 94.9375

Points to remember when jumping major kernel versionsPoints to remember when jumping major kernel versions

● Best starting point is to plan work needed to establish if key requirements of upgrade
are met
– Then decide to continue and plan / estimate further work after that

● Don't blindly forward port, inspect code carefully to assess:
– What to port from old kernel

– What to leave behind

– What to extend in new kernel

● Check all your platform data!
– Re-apply in DTS as appropriate

● Upstream useful changes during the project, not afterwards (Depending on certain
factors)

● Every project/platform has different challenges
– But universally something(s) always takes longer than planned

Questions?

Get in touch: elangley@kobilon.com

Questions?

Get in touch: elangley@kobilon.com

© Copyright 2018, Ed Langley
Slides released under

Creative Commons Attribution - Share Alike 4.0 License
https://creativecommons.org/licenses/by-sa/4.0/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

