Simplify Distributed Rate-Limiting in Overlay Cloud Network with FDRL

Alibaba Cloud Senior Technical Expert, Stephen Xu

Agenda

- Alibaba cloud network infrastructure Introduction
- Key idea of FDRL
- Experiment in VPP

What's problem we meet in Cloud overlay network?

Global Alibaba Cloud Network Infrastructure

Huhehaote

XiAn •

BeiJing QingDag

ShenYang

ZhanaBe

WuHar ShangHai Chengdu HangZho

shenZhen HongKong

Region

C-) Alibaba Cloud

Alibaba Network Architecture

Apsara LuoShen, Alibaba Cloud SDN Architecture

Control Plane

VPC Controller

CEN Controller

Management Plane **CCN Controller NFV Controller** Intelligent **Maintenance System** Intelligent

Data Plane

Apsara vSwitch

Internet GW

SLB

DCN GW

Apsara LuoShen System

Hybrid Cloud GW

CCN

Operation System

Data Analysis

Classic

First Gen

Network connection

Classic

Second

VPC

Tenant Separation

LuoShen Evolving

Cross Connect

Networkless

Comprehensive Networking Product Family 12 products for 5 scenarios

Self-Defined Cloud Networking Environment

VPC

Internet Access

SLB NAT Gateway EIP

Shared Flow Package Shared Bandwidth Package

From Data Center to Global Connection, for every enterprise networking scenarios

Saving BGP Cost

Building Hybrid Cloud

Global Connection

Express Connect Cloud Hosting VPN Gateway Smart Access Gateway(CCN)

Cloud Enterprise Network(CEN) Global Acceleration(GA)

Cloud Network Topology

Overlay Logical Topology

Problems?

VM Want to Split Internet Traffic Across Multiple underlay Paths to multiple IGWs

- Load balancing to different Path between VM and IGW cluster nodes.
- We focus on Overlay nodes, ignoring the underlay topology

- Underlay network is usually CLOS in DC deployment
- LB exactly do in two Layers:
 - Underlay network, ECMP is done btw different physical paths.
 - Overlay network, ECMP is done btw different IGWs within the cluster

Key challenges are in overlay :

1. How to do the ECMP

2. How to do the rate-limiting

Overlay Gateway Cluster

How to Split traffic to different Paths?

How to Split Traffic?

Packet-Based

- Accurate
- Reorders TCP packets
- Easily tracks dynamic ratios

Flow-Based

- Inaccurate
- No packet reordering
- **Problem: Elephants** Flow and Mice flows

Can we <u>simply</u> combine the best of the two approaches in overlay case?

Traffic

- Load balancing to remove hot spots
- Problem : Elephant flow and Mice flow
- Rebalance traffic when unpredictable events occur • (Outages, DoS, BGP reroutes, Flash Crowds, ...)

There is good idea of quickly bypassing the failure point through changing the overlay src_port (failure recovery)

How to make the rate-limiting?

Reroute and aggregate the same flow to one GW to do the centralized rate-limiting

(**S1**)

Simple but not efficient

Too complex, may be not accurate

What is the FlowLet?

Two Cisco papers: Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching CONGA: Distributed Congestion-Aware Load Balancing for Datacenters

Flowlets exist because TCP is burst:

- TCP usually sends a window in one or a few bursts and waits for acks
 Slow-start
- Ack compression
- Window is much smaller than delay-BW product
- Most flowlets have inter-arrivals less than an RTT
- -> most flowlets are sub-windows

FDRL(Flowlet based distributed rate-limiting)

- Select the static Time-Diff as 300us or 100 us
- In the VM side, virtual switch will do the FlowLet splitting
- Controller to dynamically change the rate-limiting ratio

according to the cluster member changing

Testing Result Analysis

Figure 3: The process of flowlet splitting and dispatching to different paths over time

the symmetric rate-limiting setting

Figure 5: Throughput achieved by different paths under the asymmetric rate-limiting setting

Figure 6: Total rate achieved via FDRL normalized to the limiting rate expected to reach

FDRL leverage the simple FlowLet mechanism using the overlay UDP src port as the entropy.

- Simply implement
- Self-adaption
- Great performance improvement
- Great BW coefficient of utilization

How to implement the FDRL in VPP

Implementing Flowlet in VPP is Simple

					Flow entry	Last_Seen (s)
SRCip	DSTip	SRCPort	DSTPort	hash		
					3	9920.2659
۰.						

- Record the flow and timestamp for the time of last receive pkt
- If (Now Last Seen) > δ , flow can change path
- Change the overlay encap filed of src_port
- Reassign path proportionally to the desired split ratios

Plugin	Version	Description
1. ioam_plugin.so	18.07-7~g004aa8f-dirty	Inbound OAM
2. memif_plugin.so	18.07-7~g004aa8f-dirty	Packet Memory Inter
face (experimetal)		
3. avf_plugin.so	18.07-7~g004aa8f-dirty	Intel Adaptive Virt
ual Function (AVF) Device Plugin		
pppoe_plugin.so	18.07-7~g004aa8f-dirty	PPPOE
5. flowtable_plugin.so	18.07-7~g004aa8f-dirty	Flowtable
6. abt_plugin.so	18.07-7~g004aa8f-dirty	ACL based Forwardin

Alibaba Clo Official Cloud Services Partne

Base on the flowtable plugin

- Support Dynamical session for TCP flow, with session aging/timeout
- TCP stateful session, TCP state update.
- Record the timestamp for last pkt receiving based on flow
- Make the judgement for the action: when we need to change the path
- How to change the path: just change the overlay udp src port.

DBGvpp# show flowtable Number of flows cache allocated:256 active_flow: 0 run_show_cmd_time(s):68229237 DBGvpp# DBGvpp# flowtable ? flowtable [max-flows <n>] [intf <name>] [next-node <nam flowtable e>] [disable] DBGvpp# flowtable intf VirtualFunctionEthernet7/10/2 BGvpp# show flowtabl Number of flows cache allocated:256 active_flow: 0 run_show_cmd_time(s):68229279 DBGvpp# show flowtabl lamber of flows cuche allocated:256 active_flow: 1 run_show_cmd_time(s):68229297 sig_src:80.0.0.159, sig_dst:80.0.0.160, sig_proto:1, sig_port_src:0, sig_port_dst:0 tcp_state: 0, expire(s):68229353, lifetime:60 flow_id:1, cpu_index:0, offloaded:0 stats[0].pkts:0, stats[0].bytes:0 stats[1].pkts:4, stats[1].bytes:256 last_pkt_dispatch_clock(tickes):156927383116153060, last_pkt_dispatch_time(us):68229297007023

How to implement the FDRL in VPP

[root@rs7h11514.et2sqa:/home/xiyun.xxy/vpp]

#git diff src/vlib/buffer.h diff --git a/src/vlib/buffer.h b/src/vlib/buffer.h index 9555cd7..8269180 100644 --- a/src/vlib/buffer.h +++ b/src/vlib/buffer.h @@ -156,7 +156,10 @@ typedef struct

vlib_buffer_free_list_index_t free_list_index; /** < only used if</pre>

```
VLIB_BUFFER_NON_DEFAULT_FREELIST
flag is set */
```

u8 align_pad[3]; /**< available */

```
+#define FLOW_FLAGS_SWITCH_PATH 0x01
```

- + u8 flow_flags;
- + u8 align_pad[2]; /**< available */</p> u32 opaque2[12]; /**< More opaque data, see ../vnet/vnet/buffer.h */

/***** end of second cache line */

Base on the flowtable plugin

- Support Dynamical session for TCP flow, with session aging/timeout
- TCP stateful session, TCP state update.
- Record the timestamp for last pkt receiving based on flow
- Make the judgement for the action: when we need to change the path
- How to change the path: just change the overlay udp src port.

What is the next Step?

Call for community to join this direction, and make more improvement:

- Dynamically change the time diff for different Elephants/Mice flow
- Asymmetry rate-limiting scenario
- Flowlet is still working or not after BBQ?
- · Use the same logic to quickly bypass the failure path through

changing the overlay src-port

VPP implementation, and integration to support more FDRL features

Our Vision

Simply The Network

Blog Scan to Learn More

DingDing User Group

Scan to Learn More

Thanks

