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A brief history of configuration at Airbnb
Generating Kubernetes files
Outline

Creating a kubect| wrapper

Extending and customizing Kubernetes
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Start planning your trip @MELANIECEBULA
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Amsterdam Experience Cruise The all Dutch food & history tour Capture the city & you onaphoto Early morning- Canals all to Romantic Waters Boattour Jewish tour & visit to AnneFrank
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Where to stay

PRIVATE ROOM - 1BED PRIVATE ROOM - 2 BEDS PRIVATE ROOM - 1BED PRIVATE ROOM - 1BED PRIVATE ROOM - 1BED PRIVATE ROOM - 1BED

LUXURY INDEPENDENT STUDIO on Rebel - Private Room Bed & Boat, apartment on Private Attic Studio/Roofterrace Experience a houseboat in Authentic houseboat with privacy
SHIP : free bikes! $126 per night - Free cancellation houseboat. Free bikes. $90 per night - Free cancellation Amsterdam and comfort

$162 per night - Free cancellation %% % %% 551 - Superhost $145 per night - Free cancellation * %%k %% 370 - Superhost $145 per night - Free cancellation $128 per night - Free cancellation

%% %%k 334 - Superhost %% %%k 328 - Superhost %%k kk 247 - Superhost * %% kk 373 - Superhost
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Whatis airbnb?

AN ONLINE MARKETPLACE FOR SHARING HOMES AND EXPERIENCES

81k 197+ 5mil

cities countries homes
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Whny Microservices?
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Whny Microservices?

ENGINEERING TEAM

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
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Whny Microservices?

SCALING CONTINUOUS DELIVERY

CONTINUOUS
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Deploy
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EEEEEl DELIVERY
Develop
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Deploy
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Deploy
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Release DELIVERY
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Whny Microservices?

Deploys per week (all apps, all environments) ...
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Whny Microservices?

Monolith production deploys per week
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Whny Microservices?

120,000

production deploys
per year
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Splitting the Monolith

Load Balancer

Server Side Rendering

Monolith ->

AP| Gateway
v bv

Global
services
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Splitting the Monolith

U

Load Balancer

Server Side Rendering

AP| Gateway
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Standardize Service Creation

NO SNOWFLAKES
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Standardize Service Creation

OKAY BUT HOW?
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Evolution of Configuration Management

o o

— r—————————
Manually configuring Automating Automating
boxes configuration of configuration and

applications with Chef  orchestration of
containerized

applications with
Kubernetes



KUBERNETES
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immutable, reproducible containers

designed for a microservices architecture

What Makes
Kubernetes - human-readable format
Awesome - declarative

efficient scheduling

extensible AP
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What Makes - significant set up cost
Kubernetes NOT - complex configuration and concepts
Awesome - tooling is not developer friendly

open Issues




GENERATI




kubernetes

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

kubectl
apply

kubernetes cluster
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kubernetes

IS REPETITIVE

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

lots of boilerplate

repetitive by
environment

kubectl
apply

kubernetes cluster
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Project

AppPSs

Containers

Files

Volumes

Dockerfile
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kube-gen E

generate :

Production
Deployment

Production
ConfigMap

Production
Service

Canary
Deployment

Canary
ConfigMap

Canary
Service

kubectl
apply

kubernetes cluster
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Project
Production Canary
APPS Deployment| | Deployment
“ ; kube-gen :
: kubectl
Containers generate : apply

Production Canary
ConfigMap ConfigMap

kubernetes cluster

Files

Volumes

Production Canary
Service Service

Dockerfile

llllllllllllllllllll



kube-gen

generate
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What are the basic

Project

attributes of my project?

ApPpPS

Containers

kube-gen

THE PROJECT FILE ,
Files

Volumes

Dockerfile

°
.
---------------------
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# under _infra/kube/kube-gen.yml

5.1.0

ApPpPS
Containers
kube-gen >
THE PROJECT FILE |
Files
7
Volumes
” 4
Dockerfile

7
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# under _infra/kube/kube-gen.yml

5.1.0

ApPpPS

- 4
”

Containers

kube-gen >

THE PROJECT FILE

Files
-4

Volumes
” 4

Dockerfile

=
becomes an

admin role
binding filel
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# under generated/bonk/bonk-production/admin-role-
binding.yml

apiVersion: rbac.authorization.k8s.10/v1

kind: RoleBinding

APPS metadata:
= creationTimestamp: null
kUbe'gen Containers name: bonk—production-admin-role-binding
-4
GENERATED ADMIN namespace: bonk-production
Files
ROLEBINDING FILE ~oleRef:
4
ap1Group: rbac.authorization.k8s.10
Volumes
- kind: ClusterRole
Dockerftile name: - adin
-4 subjects:

- kind: User

name: melanie_cebula
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# under _infra/kube/kube-gen.yml

5.1.0

environments can be

APPS accessed by all the
- other files!
Containers
kube-gen >
THE PROJECT FILE |
Files
” 4
Volumes
” 4
Dockerfile

7




kube-gen

TEMPLATE VARIABLES

“_"""“""""“""""“""""“""""“""""“""""“""""
1||||||]||||||]||||||]||||||1||||||\

-------------------
* Ye

Project

Apps

Containers

Files

Volumes

Dockerfile

8
.
---------------------

di
infra/kube

P
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‘erent concepts map to different yaml files under

environment params defined in the project are
accessed with go templating:

exX: {{ .Env.Params.replicas }}

# under _infra/kube/apps/bonk.yml

{{ .Env.Params.replicas }}

rol1lingUpdate
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grm—— ) . _{{ }_} Slgnals gO templatlng

roject | 1+ kube-gen will generate all the files for the different
: environments, and replace each .Env.Params.replicas

with the appropriate value from the project file

Apps
ex: staging has 2 replicas, production has 10 replicas

Containers

kube-gen

TEMPLATE VARIABLES

# under _infra/kube/apps/bonk.yml

Files

from the
oroject filel

Volumes {{ .Env.Params.replicas }}

Dockerfile

rol1lingUpdate

1||||||]||||||]||||||]||||||1||||||\

8
.
---------------------
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lllllllllllllllllll
o* Yo

Project

What kind of workload?

Apps

Containers

kube-gen

example workloads
APP FILES

Files

Volumes

Dockerfile

.
---------------------
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# under _infra/kube/apps/bonk-web.yml

Project
-4

- eq .Env.Name “development” }}
Apps

Containers

kube-gen >

APP FILES

Files
-4

Volumes {{ .Env.Params.minReplicas }}

4
{{ .Env.Params.maxReplicas }}

Dockerfile
” 4
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lllllllllllllllllll
o* Yo

Project

Which shared components

ApDpS
PP to use?

Containers

kube-gen

example components
COMPONENTS

Files

Volumes

secrets statsd

Dockerfile

.
---------------------
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Nginx component

Main

Container

»

-
-
-
-
-

Containers | & . common patterns are abstracted into a component

appPs enable components
Main App

kube-gen

COMPONENTS

component yaml merged into project
Volumes  may require params to be set

mMay set default params

Files

Dockerfile

*
llllllllllllllllllll
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IIIIIIIIIIIIIIIIIIIII

Project

ApPpPS

. \What does the container
Containers

neeq?

kube-gen

CONTAINER FILES .
Files

Volumes

Dockerfile

.
.
---------------------
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Project
7

APPS - image to use

d
~

- - command and args to run
Containers
kube-gen ) © - ENVvariablesto passin

CONTAINER FILES

Files - resource requests and limits for container
file and volume mounts used by this container
Volumes
~ 4
Dockerfile

~ 4
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IIIIIIIIIIIIIIIIIIIII

Project

ApPpPS

Containers

kube-gen

OTHER FILES

These can be mounted into

your containers

Volumes

Dockerfile

®
.
---------------------
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IIIIIIIIIIIIIIIIIIIII

Project

ApPpPS

Containers

kube-gen

OTHER FILES ,
Files

Volumes

The main Dockerfile for the
Dockerfile

project (installs needed
dependencies)

°
.
---------------------







kubernetes

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

kubectl
apply

kubernetes cluster
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kubectl

IS VERBOSE

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary
ConfigMap ConfigMap

Production Canary
Service Service

kubernetes cluster

verbose

repetitive by
namespace

@MELANIECEBULA



k tool

KUBECTL WRAPPER

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

kubectl
apply

@MELANIECEBULA

kubernetes cluster
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* Runs in the project home directory:
$ cd /path/to/bonk

$ k status

» Environment variables tor arguments:
$ k status ENV=staging
$ export ENV=staging
$ k status

* Prints the command that it will execute:
$ k status ENV=staging

kubectl get pods --namespace=bonk-staging
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- k generate transforms kube-gen files to kubernetes
files

- k build performs docker build and docker push with
tags

- k deploy creates namespace, applies/replaces
kubernetes files, sleeps and checks deployment status

- can chaincommands; ex: k all
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» defaults to random pod, main container:
$ k ssh ENV=staging

» Specity particular pod, specific container:

$ k logs ENV=staging POD=.. CONTAINER=statsd-
Proxy

+ k diagnose: shows status and logs tor each failing
container of your pod, and shows failure events
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- admission controller:
- require project ownership (via annotations)
Exten din g - prevent namespace creation under incorrect cluster
Kubernetes - prevent deployment of objects with known security holes
- deployment pruner:
- automatically rotate old pods

- rotates over-provisioned availability zones
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- it is a common anti-pattern for clients of a service to not
retry on connection failures

Extending

- as a k8s service deploys, requests may be sent to
terminating pods and cause a spike in 500s

Kubernetes

- Use graceful termination to mitigate this




@MELANIECEBULA

# under _infra/kube/apps/bonk.yml
# wait up to 180 seconds before “kill -9” the pods
180

Extending
KUbernetes # under _infra/kube/containers/container.yml

# wait up to 120 seconds before shutting down

- /bin/sleep
_ “120”
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# under _infra/kube/apps/bonk.yml
# wait up to 180 seconds before “kill -9” the pods
180

Extending
KUbernetes # under _infra/kube/containers/container.yml

# wait up to 120 seconds before shutting down

this gives our service
discovery container time
- /bin/sleep to mark this pod as
_ «12p” unhealthy
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# under _infra/kube/apps/bonk.yml
# wait up to 180 seconds before “kill -9” the pods
180

Extending
KUbernetes # under _infra/kube/containers/container.yml

# wait up to 120 seconds before shutting down

you can do more
sophisticated server
shutdown here tool!

- /bin/sleep
_ “120”
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# under _infra/kube/apps/bonk.yml

# wait up to 180 seconds before “kill after the preStop
command finishes, the

180 :
containers have an
Extendi additional 60sec to exit
ending gracefully
KUbernetes # under _infra/kube/containers/container.yml

# wait up to 120 seconds before shutting down

- /bin/sleep
_ “120”
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Creating anew service (before)

" |lwanttocreateanew T~

service

Create |AM
Role

Create Deplo boarcD
App

Request @serve SmaﬂstacD <§¥ate Zoned Encryption> < Generate Code

Database Ports Keys \ Boilerplate
Database Setup Axon for > Create <§?quest Internal CA>
Password Database Databags Certs

ncrypted Database Password in Server
Databags > Configuration

;

Database connection
configuration

New Github
Repo

Set Github

permissions

< Request sudo/SSH >
permissions

Application Configuration
(Chef Recipes) >

First
Converge

< Pray that everything works.. >




Everything about a service snould bein
one place, and managed with one
OrOCeSS.



Configuration

LIVES IN ONE PLACE

-very

foundi

-asy

- Confl

n one place

~dit code a

to adc

new confi

guration statical

gura
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thing you need to know about your service can be

- All configuration lives in _infra alongside project code
nd configuratio

N with one pull request

lon

y validated as part of Cl



Configuration

LIVES IN ONE PLACE

What we support:

- kube-genfiles

- CO
- do

alv

NUOUS Integ

CU

nentation (markdown)

- databag secrets and keys

- development (

- AWS IAM roles

internal tool conf
egacy service d
oroject ownership and metac

- ..and morel

egacy)
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ration files (with containers)

iguration (Ul/UX)

iscovery confi

guration
ata
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A single deploy process for every change

Develop Merge Deploy
—_—y—— @

Write code and config  Open a PR and merge Deploy all changes
under your project your code to master atomically
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Reduce service boilerplate

WITH GENERATORS!

generators make best practices the default
collection of config generators and language-specific generators
uses thor for better control (update, review, commit)

set up a “hello world” service with just one command
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Reduce time to “hello world”

i e

2 weeks 2 minutes
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Takeaways

Store configuration alongside project code
Abstract away your infrastructure with generators
Abstract away complex tooling with a wrapper CLI
Configuration and tools should set defaults

Standardize on one process for storing and applying configuration changes






