
Services for All

@MELANIECEBULA / SEPT 2018 / ONS EUROPE

How to Empower Engineers (with Kubernetes)

1. A brief history of configuration at Airbnb

2. Generating Kubernetes files

3. Creating a kubectl wrapper

4. Extending and customizing Kubernetes

5. Beyond Kubernetes

Outline

@MELANIECEBULA

@MELANIECEBULA

81k 191+ 5 mil
countriescities homes

What is airbnb?
AN ONLINE MARKETPLACE FOR SHARING HOMES AND EXPERIENCES

@MELANIECEBULA

Who am I?

@MELANIECEBULA

A BRIEF HISTORY

MONOLITH LO C

0

1000000

2000000

3000000

4000000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

😳

Why Microservices? @MELANIECEBULA

ENGINEERING TE AM

0

250

500

750

1000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

😲

Why Microservices? @MELANIECEBULA

S CALING CONTINUOUS DELIVERY

Why Microservices? @MELANIECEBULA

Why Microservices?

Deploys per week (all apps, all environments)

@MELANIECEBULA

Why Microservices?

Monolith production deploys per week

@MELANIECEBULA

120,000
production deploys

per year

Why Microservices? @MELANIECEBULA

Monolith

UI

Splitting the Monolith

Global
services

Load Balancer

API Gateway

Server Side Rendering

Data services

@MELANIECEBULA

Splitting the Monolith

UI

Global
services

Load Balancer

API Gateway

Server Side Rendering

Data services

@MELANIECEBULA

Standardize Service Creation
NO SNOWFLAKES

@MELANIECEBULA

Standardize Service Creation

OKAY BUT HOW?

@MELANIECEBULA

CONFIGURATION IS KEY

Evolution of Configuration Management

Manually configuring
boxes

Automating
configuration of
applications with Chef

Automating
configuration and
orchestration of
containerized
applications with
Kubernetes

@MELANIECEBULA

KUBERNETES OUT-OF-THE-BOX

• immutable, reproducible containers

• designed for a microservices architecture

• human-readable format

• declarative

• efficient scheduling

• extensible API

What Makes
Kubernetes
Awesome

@MELANIECEBULA

• significant set up cost

• complex configuration and concepts

• tooling is not developer friendly

• open issues

What Makes
Kubernetes NOT
Awesome

@MELANIECEBULA

GENERATING KUBERNETES
FILES

P

kubernetes

@MELANIECEBULA

kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes config files

kubernetes cluster

kubernetes

lots of boilerplate

repetitive by
environment

IS REPETITIVE

@MELANIECEBULA

kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes config files

kubernetes cluster

Project

Apps

Containers

Files

Volumes

Dockerfile

kube-gen

generate
kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes cluster

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

kube-gen

generate
kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes cluster

kube-gen!
@MELANIECEBULA

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

kube-gen

generate

kube-gen
THE PROJECT FILE

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

What are the basic
attributes of my project?

kube-gen
THE PROJECT FILE

under _infra/kube/kube-gen.yml

version: 5.1.0

project:

 name: bonk

environments:

 production:

 params:

 replicas: 10

 port: 6585

 staging:

 params:

 replicas: 2

 port: 6586

users:

 melanie_cebula

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

kube-gen
THE PROJECT FILE

under _infra/kube/kube-gen.yml

version: 5.1.0

project:

 name: bonk

environments:

 production:

 params:

 replicas: 10

 port: 6585

 staging:

 params:

 replicas: 2

 port: 6586

users:

 melanie_cebula

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

becomes an
admin role
binding file!

kube-gen
GENERATED ADMIN

ROLEBINDING FILE

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

under generated/bonk/bonk-production/admin-role-
binding.yml

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 creationTimestamp: null

 name: bonk—production-admin-role-binding

 namespace: bonk-production

roleRef:

 apiGroup: rbac.authorization.k8s.io

 kind: ClusterRole

 name: admin

subjects:

- kind: User

 name: melanie_cebula

kube-gen
THE PROJECT FILE

under _infra/kube/kube-gen.yml

version: 5.1.0

project:

 name: bonk

environments:

 production:

 params:

 replicas: 10

 port: 6585

 staging:

 params:

 replicas: 2

 port: 6586

users:

 melanie_cebula

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

environments can be
accessed by all the

other files!

• different concepts map to different yaml files under
_infra/kube

• environment params defined in the project are
accessed with go templating:

• ex: {{ .Env.Params.replicas }}

kube-gen
TEMPLATE VARIABLES

under _infra/kube/apps/bonk.yml

workload:

 deployment:

 replicas: {{ .Env.Params.replicas }}

 strategy:

 rollingUpdate

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

kube-gen
TEMPLATE VARIABLES

under _infra/kube/apps/bonk.yml

workload:

 deployment:

 replicas: {{ .Env.Params.replicas }}

 strategy:

 rollingUpdate

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

from the
project file!

• {{ }} signals go templating

• kube-gen will generate all the files for the different
environments, and replace each .Env.Params.replicas
with the appropriate value from the project file

• ex: staging has 2 replicas, production has 10 replicas

kube-gen
APP FILES

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

What kind of workload?

bonk-

web

bonk-

worker

bonk-

cron

example workloads

kube-gen
APP FILES

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

under _infra/kube/apps/bonk-web.yml

workload:

 deployment:

{{ if eq .Env.Name “development” }}

 strategy:

 rollingUpdate:

 maxUnavailable: 1

{{ else }}

 autoscaling:

 minReplicas: {{ .Env.Params.minReplicas }}

 maxReplicas: {{ .Env.Params.maxReplicas }}

{{ end }}

kube-gen
COMP ONENTS

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

Which shared components
to use?

nginx secrets statsd

example components

kube-gen
COMP ONENTS

@MELANIECEBULA

Main
Container

Containers

Main App

Volumes

Files

Dockerfile

nginx component

• common patterns are abstracted into a component

• apps enable components

• component yaml merged into project

• may require params to be set

• may set default params

kube-gen
CONTAINER FILES

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

What does the container
need?

kube-gen
CONTAINER FILES

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

• image to use

• command and args to run

• ENV variables to pass in

• resource requests and limits for container

• file and volume mounts used by this container

kube-gen
OTHER FILES

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile

These can be mounted into
your containers

kube-gen
OTHER FILES

@MELANIECEBULA

Project

Apps

Containers

Files

Volumes

Dockerfile
The main Dockerfile for the

project (installs needed
dependencies)

KUBECTL WRAPPER

kubernetes

@MELANIECEBULA

kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes config files

kubernetes cluster

kubectl
IS VERBOSE

@MELANIECEBULA

kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes config files

kubernetes cluster

verbose

repetitive by
namespace

k tool
KUBECTL WRAPPER

@MELANIECEBULA

k tool kubectl
apply

Production
Deployment

Canary
Deployment

Production
ConfigMap

Canary
ConfigMap

Production
Service

Canary
Service

kubernetes config files

kubernetes cluster

k tool
THE ALL PURP OSE CLI WRAPPER

@MELANIECEBULA

• Runs in the project home directory: 
 $ cd /path/to/bonk
 $ k status

• Environment variables for arguments:

 $ k status ENV=staging
 $ export ENV=staging
 $ k status

• Prints the command that it will execute:  
 $ k status ENV=staging

kubectl get pods --namespace=bonk-staging

•

k tool
USES ENV VARS

@MELANIECEBULA

• k generate transforms kube-gen files to kubernetes
files

• k build performs docker build and docker push with
tags

• k deploy creates namespace, applies/replaces
kubernetes files, sleeps and checks deployment status

• can chain commands; ex: k all  

•

k tool
SIMPLIFIES BUILD AND DEPLOYS

@MELANIECEBULA

• defaults to random pod, main container:

 $ k ssh ENV=staging
• specify particular pod, specific container:

 $ k logs ENV=staging POD=… CONTAINER=statsd-
proxy
• k diagnose: shows status and logs for each failing

container of your pod, and shows failure events
•

k tool
A DEBUG GING TO OL

@MELANIECEBULA

EXTENDING KUBERNETES

• admission controller:

- require project ownership (via annotations)

- prevent namespace creation under incorrect cluster

- prevent deployment of objects with known security holes

• deployment pruner:

- automatically rotate old pods

- rotates over-provisioned availability zones

@MELANIECEBULA

Extending
Kubernetes
WITH CUSTOM CONTROLLERS

• it is a common anti-pattern for clients of a service to not
retry on connection failures

• as a k8s service deploys, requests may be sent to
terminating pods and cause a spike in 500s

• use graceful termination to mitigate this

@MELANIECEBULA

Extending
Kubernetes
WITH GRACEFUL TERMINATION

@MELANIECEBULA

Extending
Kubernetes
WITH GRACEFUL TERMINATION

under _infra/kube/apps/bonk.yml

wait up to 180 seconds before “kill -9” the pods

terminationGracePeriodSeconds: 180

under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

lifecycle:

 preStop:

 exec:

 command:

 - /bin/sleep

 - “120”

@MELANIECEBULA

Extending
Kubernetes
WITH GRACEFUL TERMINATION

under _infra/kube/apps/bonk.yml

wait up to 180 seconds before “kill -9” the pods

terminationGracePeriodSeconds: 180

under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

lifecycle:

 preStop:

 exec:

 command:

 - /bin/sleep

 - “120”

this gives our service
discovery container time

to mark this pod as
unhealthy

@MELANIECEBULA

Extending
Kubernetes
WITH GRACEFUL TERMINATION

under _infra/kube/apps/bonk.yml

wait up to 180 seconds before “kill -9” the pods

terminationGracePeriodSeconds: 180

under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

lifecycle:

 preStop:

 exec:

 command:

 - /bin/sleep

 - “120”

you can do more
sophisticated server
shutdown here too!

@MELANIECEBULA

Extending
Kubernetes
WITH GRACEFUL TERMINATION

under _infra/kube/apps/bonk.yml

wait up to 180 seconds before “kill -9” the pods

terminationGracePeriodSeconds: 180

under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

lifecycle:

 preStop:

 exec:

 command:

 - /bin/sleep

 - “120”

after the preStop
command finishes, the

containers have an
additional 60sec to exit

gracefully

BEYOND KUBERNETES

Creating a new service (before)
@MELANIECEBULA

Everything about a service should be in
one place, and managed with one

process.

Everything you need to know about your service can be
found in one place

• All configuration lives in _infra alongside project code
• Edit code and configuration with one pull request
• Easy to add new configuration
• Configuration statically validated as part of CI

Configuration
LIVES IN ONE PLACE

@MELANIECEBULA

What we support:

• kube-gen files
• continuous integration files (with containers)
• documentation (markdown)
• databag secrets and keys
• development (legacy)
• AWS IAM roles
• internal tool configuration (UI/UX)
• legacy service discovery configuration
• project ownership and metadata
• .. and more!

Configuration
LIVES IN ONE PLACE

@MELANIECEBULA

A single deploy process for every change

Write code and config
under your project

Open a PR and merge
your code to master

Deploy all changes
atomically

Develop DeployMerge

@MELANIECEBULA

GENERATING SERVICE
BOILERPLATE

• generators make best practices the default

• collection of config generators and language-specific generators

• uses thor for better control (update, review, commit)

• set up a “hello world” service with just one command

Reduce service boilerplate
WITH GENERATORS!

@MELANIECEBULA

Reduce time to “hello world”

2 weeks 2 minutes

@MELANIECEBULA

• Store configuration alongside project code

• Abstract away your infrastructure with generators

• Abstract away complex tooling with a wrapper CLI

• Configuration and tools should set defaults

• Standardize on one process for storing and applying configuration changes

Takeaways
@MELANIECEBULA

