@MELANIECEBULA / SEPT 2018 / ONS EUROPE

ith Kubernetes)

@MELANIECEBULA

-\

A brief history of configuration at Airbnb
Generating Kubernetes files
Outline

Creating a kubect| wrapper

Extending and customizing Kubernetes

g~ W N

Beyond Kubernetes

Start planning your trip @MELANIECEBULA

:
%]

e HoOmes Experiences Restaurants

BOAT RIDE FOOD WALK PHOTO WALK BOAT RIDE BOAT RIDE BIKE RIDE

Amsterdam Experience Cruise The all Dutch food & history tour Capture the city & you onaphoto Early morning- Canals all to Romantic Waters Boattour Jewish tour & visit to AnneFrank
$59 per person $91 per person walk ourselves $35 per person house
4.89 ¥k kkk 836 491 % * k%% 196 $35 per person $42 per person 4.87 %k k k% 231 $43 per person

4.83 %k kK k 132 4.89 kk * k% 565 479 kkkkk 24

Show all (118) >

Where to stay

PRIVATE ROOM - 1BED PRIVATE ROOM - 2 BEDS PRIVATE ROOM - 1BED PRIVATE ROOM - 1BED PRIVATE ROOM - 1BED PRIVATE ROOM - 1BED

LUXURY INDEPENDENT STUDIO on Rebel - Private Room Bed & Boat, apartment on Private Attic Studio/Roofterrace Experience a houseboat in Authentic houseboat with privacy
SHIP : free bikes! $126 per night - Free cancellation houseboat. Free bikes. $90 per night - Free cancellation Amsterdam and comfort

$162 per night - Free cancellation %% % %% 551 - Superhost $145 per night - Free cancellation * %%k %% 370 - Superhost $145 per night - Free cancellation $128 per night - Free cancellation

%% %%k 334 - Superhost %% %%k 328 - Superhost %%k kk 247 - Superhost * %% kk 373 - Superhost

Show all (2000+) >

@MELANIECEBULA

Whatis airbnb?

AN ONLINE MARKETPLACE FOR SHARING HOMES AND EXPERIENCES

81k 197+ 5mil

cities countries homes

MELANIECEBULA

¢’

@MELANIECEBULA

Whny Microservices?

4000000

3000000

MONOLITH LOC 2000000

1000000

O
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

@MELANIECEBULA

Whny Microservices?

ENGINEERING TEAM

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

@MELANIECEBULA

Whny Microservices?

SCALING CONTINUOUS DELIVERY

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS
EEEEEl DELIVERY
Develop

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS
Release DELIVERY
Deploy

CONTINUOUS

Release DELIVERY

@MELANIECEBULA

Whny Microservices?

Deploys per week (all apps, all environments) ...

12.0k N

10.0k \/\/\’
8.00k
l
6.00k
4.00k
N
2.00k

0.00 L/\ u

October 2014 April July October 2015 April July October 2016 April July October 2017 April July October 2018 April July

Whny Microservices?

Monolith production deploys per week

™

/

|

i

!

/

EEEEEEEEEEEEE

Whny Microservices?

120,000

production deploys
per year

@MELANIECEBULA

Splitting the Monolith

Load Balancer

Server Side Rendering

Monolith ->

AP| Gateway
v bv

Global
services

@MELANIECEBULA

Splitting the Monolith

U

Load Balancer

Server Side Rendering

AP| Gateway
v o, AKX MO
TTT] e fud KW

EEEEEEEEEEEEEE

Standardize Service Creation

NO SNOWFLAKES

AXx b
206 A

Standardize Service Creation

OKAY BUT HOW?

@MELANIECEBULA

’k%

Evolution of Configuration Management

o o

— r—————————
Manually configuring Automating Automating
boxes configuration of configuration and

applications with Chef orchestration of
containerized

applications with
Kubernetes

KUBERNETES

@MELANIECEBULA

immutable, reproducible containers

designed for a microservices architecture

What Makes
Kubernetes - human-readable format
Awesome - declarative

efficient scheduling

extensible AP

@MELANIECEBULA

What Makes - significant set up cost
Kubernetes NOT - complex configuration and concepts
Awesome - tooling is not developer friendly

open Issues

GENERATI

kubernetes

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

kubectl
apply

kubernetes cluster

@MELANIECEBULA

kubernetes

IS REPETITIVE

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

lots of boilerplate

repetitive by
environment

kubectl
apply

kubernetes cluster

@MELANIECEBULA

llllllllllllllllllll

Project

AppPSs

Containers

Files

Volumes

Dockerfile

EENy
EEES

llllllllllllllllllll

kube-gen E

generate :

Production
Deployment

Production
ConfigMap

Production
Service

Canary
Deployment

Canary
ConfigMap

Canary
Service

kubectl
apply

kubernetes cluster

@MELANIECEBULA

@MELANIECEBULA

llllllllllllllllllll

Project
Production Canary
APPS Deployment| | Deployment
“ ; kube-gen :
: kubectl
Containers generate : apply

Production Canary
ConfigMap ConfigMap

kubernetes cluster

Files

Volumes

Production Canary
Service Service

Dockerfile

llllllllllllllllllll

kube-gen

generate

@MELANIECEBULA

@MELANIECEBULA

IIIIIIIIIIIIIIIIIIIII

What are the basic

Project

attributes of my project?

ApPpPS

Containers

kube-gen

THE PROJECT FILE ,
Files

Volumes

Dockerfile

°
.

@MELANIECEBULA

under _infra/kube/kube-gen.yml

5.1.0

ApPpPS
Containers
kube-gen >
THE PROJECT FILE |
Files
7
Volumes
” 4
Dockerfile

7

@MELANIECEBULA

under _infra/kube/kube-gen.yml

5.1.0

ApPpPS

- 4
”

Containers

kube-gen >

THE PROJECT FILE

Files
-4

Volumes
” 4

Dockerfile

=
becomes an

admin role
binding filel

@MELANIECEBULA

under generated/bonk/bonk-production/admin-role-
binding.yml

apiVersion: rbac.authorization.k8s.10/v1

kind: RoleBinding

APPS metadata:
= creationTimestamp: null
kUbe'gen Containers name: bonk—production-admin-role-binding
-4
GENERATED ADMIN namespace: bonk-production
Files
ROLEBINDING FILE ~oleRef:
4
ap1Group: rbac.authorization.k8s.10
Volumes
- kind: ClusterRole
Dockerftile name: - adin
-4 subjects:

- kind: User

name: melanie_cebula

@MELANIECEBULA

under _infra/kube/kube-gen.yml

5.1.0

environments can be

APPS accessed by all the
- other files!
Containers
kube-gen >
THE PROJECT FILE |
Files
” 4
Volumes
” 4
Dockerfile

7

kube-gen

TEMPLATE VARIABLES

“_"""“""""“""""“""""“""""“""""“""""“""""
1||||||]||||||]||||||]||||||1||||||\

* Ye

Project

Apps

Containers

Files

Volumes

Dockerfile

8
.

di
infra/kube

P

@MELANIECEBULA

‘erent concepts map to different yaml files under

environment params defined in the project are
accessed with go templating:

exX: {{ .Env.Params.replicas }}

under _infra/kube/apps/bonk.yml

{{ .Env.Params.replicas }}

rol1lingUpdate

@MELANIECEBULA

grm——) . _{{ }_} Slgnals gO templatlng

roject | 1+ kube-gen will generate all the files for the different
: environments, and replace each .Env.Params.replicas

with the appropriate value from the project file

Apps
ex: staging has 2 replicas, production has 10 replicas

Containers

kube-gen

TEMPLATE VARIABLES

under _infra/kube/apps/bonk.yml

Files

from the
oroject filel

Volumes {{ .Env.Params.replicas }}

Dockerfile

rol1lingUpdate

1||||||]||||||]||||||]||||||1||||||\

8
.

@MELANIECEBULA

lllllllllllllllllll
o* Yo

Project

What kind of workload?

Apps

Containers

kube-gen

example workloads
APP FILES

Files

Volumes

Dockerfile

.

@MELANIECEBULA

under _infra/kube/apps/bonk-web.yml

Project
-4

- eq .Env.Name “development” }}
Apps

Containers

kube-gen >

APP FILES

Files
-4

Volumes {{ .Env.Params.minReplicas }}

4
{{ .Env.Params.maxReplicas }}

Dockerfile
” 4

@MELANIECEBULA

lllllllllllllllllll
o* Yo

Project

Which shared components

ApDpS
PP to use?

Containers

kube-gen

example components
COMPONENTS

Files

Volumes

secrets statsd

Dockerfile

.

@MELANIECEBULA

Nginx component

Main

Container

»

-
-
-
-
-

Containers | & . common patterns are abstracted into a component

appPs enable components
Main App

kube-gen

COMPONENTS

component yaml merged into project
Volumes may require params to be set

mMay set default params

Files

Dockerfile

*
llllllllllllllllllll

@MELANIECEBULA

IIIIIIIIIIIIIIIIIIIII

Project

ApPpPS

. \What does the container
Containers

neeq?

kube-gen

CONTAINER FILES .
Files

Volumes

Dockerfile

.
.

@MELANIECEBULA

Project
7

APPS - image to use

d
~

- - command and args to run
Containers
kube-gen) © - ENVvariablesto passin

CONTAINER FILES

Files - resource requests and limits for container
file and volume mounts used by this container
Volumes
~ 4
Dockerfile

~ 4

@MELANIECEBULA

IIIIIIIIIIIIIIIIIIIII

Project

ApPpPS

Containers

kube-gen

OTHER FILES

These can be mounted into

your containers

Volumes

Dockerfile

®
.

@MELANIECEBULA

IIIIIIIIIIIIIIIIIIIII

Project

ApPpPS

Containers

kube-gen

OTHER FILES ,
Files

Volumes

The main Dockerfile for the
Dockerfile

project (installs needed
dependencies)

°
.

kubernetes

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

kubectl
apply

kubernetes cluster

@MELANIECEBULA

kubectl

IS VERBOSE

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary
ConfigMap ConfigMap

Production Canary
Service Service

kubernetes cluster

verbose

repetitive by
namespace

@MELANIECEBULA

k tool

KUBECTL WRAPPER

kubernetes config files

Production Canary
Deployment | | Deployment

Production Canary

ConfigMap ConfigMap

Production Canary
Service Service

kubectl
apply

@MELANIECEBULA

kubernetes cluster

<
-
=
m
w
O
—
<
<
-
w
=
®

@MELANIECEBULA

* Runs in the project home directory:
$ cd /path/to/bonk

$ k status

» Environment variables tor arguments:
$ k status ENV=staging
$ export ENV=staging
$ k status

* Prints the command that it will execute:
$ k status ENV=staging

kubectl get pods --namespace=bonk-staging

@MELANIECEBULA

- k generate transforms kube-gen files to kubernetes
files

- k build performs docker build and docker push with
tags

- k deploy creates namespace, applies/replaces
kubernetes files, sleeps and checks deployment status

- can chaincommands; ex: k all

@MELANIECEBULA

» defaults to random pod, main container:
$ k ssh ENV=staging

» Specity particular pod, specific container:

$ k logs ENV=staging POD=.. CONTAINER=statsd-
Proxy

+ k diagnose: shows status and logs tor each failing
container of your pod, and shows failure events

@MELANIECEBULA

- admission controller:
- require project ownership (via annotations)
Exten din g - prevent namespace creation under incorrect cluster
Kubernetes - prevent deployment of objects with known security holes
- deployment pruner:
- automatically rotate old pods

- rotates over-provisioned availability zones

@MELANIECEBULA

- it is a common anti-pattern for clients of a service to not
retry on connection failures

Extending

- as a k8s service deploys, requests may be sent to
terminating pods and cause a spike in 500s

Kubernetes

- Use graceful termination to mitigate this

@MELANIECEBULA

under _infra/kube/apps/bonk.yml
wait up to 180 seconds before “kill -9” the pods
180

Extending
KUbernetes # under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

- /bin/sleep
_ “120”

@MELANIECEBULA

under _infra/kube/apps/bonk.yml
wait up to 180 seconds before “kill -9” the pods
180

Extending
KUbernetes # under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

this gives our service
discovery container time
- /bin/sleep to mark this pod as
_ «12p” unhealthy

@MELANIECEBULA

under _infra/kube/apps/bonk.yml
wait up to 180 seconds before “kill -9” the pods
180

Extending
KUbernetes # under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

you can do more
sophisticated server
shutdown here tool!

- /bin/sleep
_ “120”

@MELANIECEBULA

under _infra/kube/apps/bonk.yml

wait up to 180 seconds before “kill after the preStop
command finishes, the

180 :
containers have an
Extendi additional 60sec to exit
ending gracefully
KUbernetes # under _infra/kube/containers/container.yml

wait up to 120 seconds before shutting down

- /bin/sleep
_ “120”

@MELANIECEBULA

Creating anew service (before)

" |lwanttocreateanew T~

service

Create |AM
Role

Create Deplo boarcD
App

Request @serve SmaﬂstacD <§¥ate Zoned Encryption> < Generate Code

Database Ports Keys \ Boilerplate
Database Setup Axon for > Create <§?quest Internal CA>
Password Database Databags Certs

ncrypted Database Password in Server
Databags > Configuration

;

Database connection
configuration

New Github
Repo

Set Github

permissions

< Request sudo/SSH >
permissions

Application Configuration
(Chef Recipes) >

First
Converge

< Pray that everything works.. >

Everything about a service snould bein
one place, and managed with one
OrOCeSS.

Configuration

LIVES IN ONE PLACE

-very

foundi

-asy

- Confl

n one place

~dit code a

to adc

new confi

guration statical

gura

@MELANIECEBULA

thing you need to know about your service can be

- All configuration lives in _infra alongside project code
nd configuratio

N with one pull request

lon

y validated as part of Cl

Configuration

LIVES IN ONE PLACE

What we support:

- kube-genfiles

- CO
- do

alv

NUOUS Integ

CU

nentation (markdown)

- databag secrets and keys

- development (

- AWS IAM roles

internal tool conf
egacy service d
oroject ownership and metac

- ..and morel

egacy)

@MELANIECEBULA

ration files (with containers)

iguration (Ul/UX)

iscovery confi

guration
ata

@MELANIECEBULA

A single deploy process for every change

Develop Merge Deploy
—_—y—— @

Write code and config Open a PR and merge Deploy all changes
under your project your code to master atomically

@MELANIECEBULA

Reduce service boilerplate

WITH GENERATORS!

generators make best practices the default
collection of config generators and language-specific generators
uses thor for better control (update, review, commit)

set up a “hello world” service with just one command

@MELANIECEBULA

Reduce time to “hello world”

i e

2 weeks 2 minutes

@MELANIECEBULA

Takeaways

Store configuration alongside project code
Abstract away your infrastructure with generators
Abstract away complex tooling with a wrapper CLI
Configuration and tools should set defaults

Standardize on one process for storing and applying configuration changes

